Reversible measure-preserving integrators for non-Hamiltonian systems

被引:24
作者
Ezra, Gregory S. [1 ]
机构
[1] Cornell Univ, Baker Lab, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
关键词
D O I
10.1063/1.2215608
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a systematic method for deriving reversible measure-preserving integrators for non-Hamiltonian systems such as the Nose-Hoover thermostat and generalized Gaussian moment thermostat (GGMT). Our approach exploits the (non-Poisson) bracket structure underlying the thermostat equations of motion. Numerical implementation for the GGMT system shows that our algorithm accurately conserves the thermostat energy function. We also study position and momentum distribution functions obtained using our integrator. (c) 2006 American Institute of Physics.
引用
收藏
页数:14
相关论文
共 74 条
[21]   GENERALIZED LIOUVILLE EQUATION [J].
GERLICH, G .
PHYSICA, 1973, 69 (02) :458-466
[22]  
Gibbs J. W., 1902, ELEMENTARY PRINCIPLE, DOI DOI 10.5962/BHL.TITLE.32624
[23]  
GRMELA M, 1980, HADRONIC J, V3, P1209
[24]  
GUIASU S, 1966, REV ROUM MATH PURE A, V11, P541
[25]  
Hairer E., 2010, Springer Series in Computational Mathematics, V31
[26]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[27]  
HOOVER WG, 1991, COMPUTATIONAL STAT
[28]   Constant temperature molecular dynamics of a protein in water by high-order decomposition of the Liouville operator [J].
Ishida, H ;
Kidera, A .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (08) :3276-3284
[29]  
Jose J.V., 1998, CLASSICAL DYNAMICS
[30]   Designing reversible measure invariant algorithms with applications to molecular dynamics [J].
Legoll, F ;
Monneau, R .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (23) :10452-10464