Vortex line and ring dynamics in trapped Bose-Einstein condensates

被引:35
作者
Jackson, B [1 ]
McCann, JF
Adams, CS
机构
[1] Univ Durham, Dept Phys, Rochester Bldg,South Rd, Durham DH1 3LE, England
[2] Queens Univ Belfast, Dept Appl Math & Theoret Phys, Belfast BT7 1NN, Antrim, North Ireland
来源
PHYSICAL REVIEW A | 2000年 / 61卷 / 01期
关键词
D O I
10.1103/PhysRevA.61.013604
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Vortex dynamics in inhomogeneous Bose-Einstein condensates are studied numerically in two and three dimensions. We simulate the precession of a single vortex around the center of a trapped condensate, and use the Magnus force to estimate the precession frequency. Vortex ring dynamics in a spherical trap are also simulated, and we discover that a ring undergoes oscillatory motion around a circle of maximum energy. The position of this locus is calculated as a function of the number of condensed atoms. In the presence of dissipation, the amplitude of the oscillation will increase, eventually resulting in self-annihilation of the ring.
引用
收藏
页数:7
相关论文
共 51 条
[41]   MOTIONS IN A BOSE CONDENSATE .1. STRUCTURE OF LARGE CIRCULAR VORTEX [J].
ROBERTS, PH ;
GRANT, J .
JOURNAL OF PHYSICS PART A GENERAL, 1971, 4 (01) :55-&
[42]   Vortex stability and persistent currents in trapped Bose gases [J].
Rokhsar, DS .
PHYSICAL REVIEW LETTERS, 1997, 79 (12) :2164-2167
[43]   TIME-DEPENDENT SOLUTION OF THE NONLINEAR SCHRODINGER-EQUATION FOR BOSE-CONDENSED TRAPPED NEUTRAL ATOMS [J].
RUPRECHT, PA ;
HOLLAND, MJ ;
BURNETT, K ;
EDWARDS, M .
PHYSICAL REVIEW A, 1995, 51 (06) :4704-4711
[45]   Magnus force in superfluids and superconductors [J].
Sonin, EB .
PHYSICAL REVIEW B, 1997, 55 (01) :485-501
[47]   Moment of inertia and superfluidity of a trapped bose gas [J].
Stringari, S .
PHYSICAL REVIEW LETTERS, 1996, 76 (09) :1405-1408
[48]   Normal modes of a vortex in a trapped Bose-Einstein condensate [J].
Svidzinsky, AA ;
Fetter, AL .
PHYSICAL REVIEW A, 1998, 58 (04) :3168-3179
[49]  
SVIDZINSKY AA, CONDMAT9811348
[50]   Pressure drag in linear and nonlinear quantum fluids [J].
Winiecki, T ;
McCann, JF ;
Adams, CS .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5186-5189