Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries

被引:621
作者
Huang, Jia-Qi [1 ]
Zhang, Qiang [1 ]
Peng, Hong-Jie [1 ]
Liu, Xin-Yan [1 ]
Qian, Wei-Zhong [1 ]
Wei, Fei [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
HIGH-RATE PERFORMANCE; COMPOSITE CATHODES; HIGH-CAPACITY; ELECTROLYTE; GRAPHENE; STATE; CHALLENGES; CELLS;
D O I
10.1039/c3ee42223b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-sulfur batteries attract great attention due to their high energy density, while their real applications are still hindered by the rapid capacity degradation. Despite great efforts devoted to solving the polysulfide shuttle between the cathode and anode electrodes, it remains a serious challenge to build highly-stable lithium-sulfur batteries. Herein we demonstrate a strategy of introducing an ion selective membrane to improve the stability and coulombic efficiency of lithium-sulfur batteries. The sulfonate-ended perfluoroalkyl ether groups on the ionic separators are connected by pores or channels that are around several nanometers in size. These SO3- groups-coated channels allow ion hopping of positively charged species (Li+) but reject hopping of negative ions, such as polysulfide anions (S-n(2-)) in this specific case due to the coulombic interactions. Consequently, this cation permselective membrane acts as an electrostatic shield for polysulfide anions, and confines the polysulfides on the cathode side. An ultra-low decay rate of 0.08% per cycle is achieved within the initial 500 cycles for the membrane developed in this work, which is less than half that of the routine membranes. Such an ion selective membrane is versatile for various electrodes and working conditions, which is promising for the construction of high performance batteries.
引用
收藏
页码:347 / 353
页数:7
相关论文
共 50 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes [J].
Cai, Zhijun ;
Liu, Yanbo ;
Liu, Sisi ;
Li, Lei ;
Zhang, Yongming .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5690-5693
[4]   Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries [J].
Cao, Yuliang ;
Li, Xiaolin ;
Aksay, Ilhan A. ;
Lemmon, John ;
Nie, Zimin ;
Yang, Zhenguo ;
Liu, Jun .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (17) :7660-7665
[5]   A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries [J].
Chen, Jia-jia ;
Zhang, Qian ;
Shi, Yi-ning ;
Qin, Lin-lin ;
Cao, Yong ;
Zheng, Ming-sen ;
Dong, Quan-feng .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (16) :5376-5382
[6]   High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries [J].
Doerfler, Susanne ;
Hagen, Markus ;
Althues, Holger ;
Tuebke, Jens ;
Kaskel, Stefan ;
Hoffmann, Michael J. .
CHEMICAL COMMUNICATIONS, 2012, 48 (34) :4097-4099
[7]   Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries [J].
Elazari, Ran ;
Salitra, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ADVANCED MATERIALS, 2011, 23 (47) :5641-+
[8]   New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes [J].
Evers, Scott ;
Nazar, Linda F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1135-1143
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   Development and costs calculation of lithium-sulfur cells with high sulfur load and binder free electrodes [J].
Hagen, M. ;
Doerfler, S. ;
Fanz, P. ;
Berger, T. ;
Speck, R. ;
Tuebke, J. ;
Althues, H. ;
Hoffmann, M. J. ;
Scherr, C. ;
Kaskel, S. .
JOURNAL OF POWER SOURCES, 2013, 224 :260-268