Scanning mutagenesis using t4 DNA ligase and short degenerate DNA oligonucleotides containing tri-nucleotide mismatches

被引:3
作者
Cherepanov, A [1 ]
de Vries, S [1 ]
机构
[1] Delft Univ Technol, Kluyver Dept Biotechnol, NL-2628 BC Delft, Netherlands
关键词
nick-ligation; oligonucleotides; scanning mutagenesis; T4 DNA ligase;
D O I
10.1093/oxfordjournals.jbchem.a003192
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Scanning mutagenesis is an attractive tool for protein structure-function correlation analysis. With one round of this method it is possible to obtain a library containing all possible single-residue mutants of the protein of interest. The practical application of this approach is currently limited by the large number and cost of the required 30-35mer oligonucleotides. As an alternative, we studied the ligation of shorter DNA oligonucleotides (6-11mer) containing a degenerate binding site and a desired mutation mismatch to a nested set of megaprimers annealed to the gene of interest. T4 DNA ligase was able to perform this task, and the obtained ligation products were elongated by DNA polymerase. The effectiveness of ligation depends on the length of the random binding site of the mutagenic oligonucleotide, on its molar excess over the template-primer complex and on the position of the mismatching tri-nucleotide insert with respect to the joining site. The secondary structure of the DNA template close to the joining site also influences the ligation yield. Mismatching oligonucleotides, protected by a 3'-phosphate group, were joined to a nested set of megaprimers, the latter being obtained by a novel procedure called reversible chain termination, i.e., termination of the dsDNA synthesis with ddNTP followed by the subsequent removal of the incorporated ddNMP with exonuclease III. T7 sequenase 2.0 DNA polymerase elongated the ligation products after the 3'-phosphate protection group was removed with T4 polynucleotide kinase, resulting in the incorporation of a specific tri-nucleotide mismatch into dsDNA. This sequence of reactions serves as the basis for a novel scanning mutagenesis procedure.
引用
收藏
页码:143 / 147
页数:5
相关论文
共 13 条