Compound semiconductor radiation detectors

被引:458
作者
Owens, A [1 ]
Peacock, A [1 ]
机构
[1] ESA, ESTEC, Sci Payload & Adv Concepts Off SCIA, NL-2200 AG Noordwijk, Netherlands
关键词
compound semiconductors; X-rays; gamma-rays; detectors;
D O I
10.1016/j.nima.2004.05.071
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We discuss the potential benefits of using compound semiconductors for the detection of X- and gamma-ray radiation. While Si and Ge have become detection standards for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by one or more of their physical limitations; namely the need for ancillary cooling systems or bulky cryogenics, their modest stopping powers and radiation intolerance. Compound semiconductors encompass such a wide range of physical properties that it is technically feasible to engineer a material to any application. Wide band-gap compounds offer the ability to operate in a wide range of thermal and radiation environments, whilst still maintaining sub-keV spectral resolution at hard X-ray wavelengths. Narrow band-gap materials, on the other hand, offer the potential of exceeding the spectral resolution of both Si and Ge, by as much as a factor of 3. Assuming that the total system noise can be reduced to a level commensurate with Fano noise, spectroscopic detectors could work in the XUV, effectively bridging the gap between the ultraviolet and soft X-ray wavebands. Thus, in principle, compound semiconductor detectors can provide continuous spectroscopic coverage from the far infrared through to gamma-ray wavelengths. However, while they are routinely used at infrared and optical wavelengths, in other bands, their development has been plagued by material and fabrication problems. This is particularly true at hard X- and gamma-ray wavelengths, where only a few compounds (e.g., GaAs, CdZnTe and HgI2) have evolved sufficiently to produce working detection systems. In this paper, we examine the current status of research in compound semiconductors and by a careful examination of material properties and future requirements, recommend a number of compounds for further development. In the longer term, when material problems are sufficiently under control, we believe the future lies in the development of heterostructures and inserted interface layers to overcome contacting problems and quantum heterostructures and superlattices to facilitate low-noise readout. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 37
页数:20
相关论文
共 67 条
[1]   BORON-COMPOUNDS FOR THERMAL-NEUTRON DETECTION [J].
ANANTHANARAYANAN, KP ;
GIELISSE, PJ ;
CHOUDRY, A .
NUCLEAR INSTRUMENTS & METHODS, 1974, 118 (01) :45-48
[2]  
[Anonymous], WIDE BANDGAP SEMICON
[3]   WHAT CAN BE EXPECTED FROM HIGH-Z SEMICONDUCTOR-DETECTORS [J].
ARMANTROUT, GA ;
SWIERKOWSKI, SP ;
SHEROHMAN, JW ;
YEE, JH .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1977, 24 (01) :121-125
[4]   A survey of ohmic contacts to III-V compound semiconductors [J].
Baca, AG ;
Ren, F ;
Zolper, JC ;
Briggs, RD ;
Pearton, SJ .
THIN SOLID FILMS, 1997, 308 :599-606
[5]   CHARGE-TRANSPORT IN ARRAYS OF SEMICONDUCTOR GAMMA-RAY DETECTORS [J].
BARRETT, HH ;
ESKIN, JD ;
BARBER, HB .
PHYSICAL REVIEW LETTERS, 1995, 75 (01) :156-159
[6]   Phosphate and cell growth on nanostructured semiconductors [J].
Bayliss, SC ;
Harris, PJ ;
Buckberry, LD ;
Rousseau, C .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1997, 16 (09) :737-740
[7]   CVD diamond for nuclear detection applications [J].
Bergonzo, P ;
Brambilla, A ;
Tromson, D ;
Mer, C ;
Guizard, B ;
Marshall, RD ;
Foulon, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 476 (03) :694-700
[8]  
Bertuccio G, 2002, MATER SCI FORUM, V433-4, P941, DOI 10.4028/www.scientific.net/MSF.433-436.941
[9]   Epitaxial silicon carbide for X-ray detection [J].
Bertuccio, G ;
Casiraghi, R ;
Nava, F .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2001, 48 (02) :232-233
[10]  
Brillson L.J., 1993, Contacts to Semiconductors: Fundamentals and Technology