Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements

被引:166
作者
Ichoku, C. [1 ]
Ellison, L. [1 ,2 ]
机构
[1] NASA, Climate & Radiat Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Sci Syst & Applicat Inc, Lanham, MD 20706 USA
基金
美国国家航空航天局;
关键词
BIOMASS BURNING EMISSIONS; OPTICAL DEPTH; FOREST-FIRE; PRODUCTS; VALIDATION; RETRIEVALS; IMPACT; MODEL; ASSIMILATION; INVENTORY;
D O I
10.5194/acp-14-6643-2014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fire emissions estimates have long been based on bottom-up approaches that are not only complex, but also fraught with compounding uncertainties. We present the development of a global gridded (1 degrees x 1 degrees) emission coefficients (C-e) product for smoke total particulate matter (TPM) based on a top-down approach using coincident measurements of fire radiative power (FRP) and aerosol optical thickness (AOT) from the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra and Aqua satellites. This new Fire Energetics and Emissions Research version 1.0 (FEER. v1) C-e product has now been released to the community and can be obtained from http://feer.gsfc.nasa.gov/, along with the corresponding 1-to-1 mapping of their quality assurance (QA) flags that will enable the C-e values to be filtered by quality for use in various applications. The regional averages of C-e values for different ecosystem types were found to be in the ranges of 16-21 g MJ-1 for savanna and grasslands, 15-32 g MJ-1 for tropical forest, 9-12 g MJ-1 for North American boreal forest, and 1826 g MJ-1 for Russian boreal forest, croplands and natural vegetation. The FEER. v1 C-e product was multiplied by time-integrated FRP data to calculate regional smoke TPM emissions, which were compared with equivalent emissions products from three existing inventories. FEER. v1 showed higher and more reasonable smoke TPM estimates than two other emissions inventories that are based on bottom-up approaches and already reported in the literature to be too low, but portrayed an overall reasonable agreement with another top-down approach. This suggests that top-down approaches may hold better promise and need to be further developed to accelerate the reduction of uncertainty associated with fire emissions estimation in air-quality and climate research and applications. Results of the analysis of FEER. v1 data for 2004-2011 show that 65-85 Tg yr(-1) of TPM is emitted globally from open biomass burning, with a generally decreasing trend over this short time period. The FEER. v1 C-e product is the first global gridded product in the family of "emission factors", that is based essentially on satellite measurements, and requires only direct satellite FRP measurements of an actively burning fire anywhere to evaluate its emission rate in near-real time, which is essential for operational activities, such as the monitoring and forecasting of smoke emission impacts on air quality.
引用
收藏
页码:6643 / 6667
页数:25
相关论文
共 84 条
[61]   Integration of geostationary FRP and polar-orbiter burned area datasets for an enhanced biomass burning inventory [J].
Roberts, G. ;
Wooster, M. J. ;
Freeborn, P. H. ;
Xu, W. .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (08) :2047-2061
[62]   Fire detection and fire characterization over Africa using Meteosat SEVIRI [J].
Roberts, Gareth J. ;
Wooster, Martin J. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (04) :1200-1218
[63]   Validation analyses of an operational fire monitoring product: The Hazard Mapping System [J].
Schroeder, W. ;
Ruminski, M. ;
Csiszar, I. ;
Giglio, L. ;
Prins, E. ;
Schmidt, C. ;
Morisette, J. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (20) :6059-6066
[64]   Validation of GOES and MODIS active fire detection products using ASTER and ETM plus data [J].
Schroeder, Wilfrid ;
Prins, Elaine ;
Giglio, Louis ;
Csiszar, Ivan ;
Schmidt, Christopher ;
Morisette, Jeffrey ;
Morton, Douglas .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (05) :2711-2726
[65]  
Schroeder W, 2005, EARTH INTERACT, V9
[66]   Integrated active fire retrievals and biomass burning emissions using complementary near-coincident ground, airborne and spaceborne sensor data [J].
Schroeder, Wilfrid ;
Ellicott, Evan ;
Ichoku, Charles ;
Ellison, Luke ;
Dickinson, Matthew B. ;
Ottmar, Roger D. ;
Clements, Craig ;
Hall, Dianne ;
Ambrosia, Vincent ;
Kremens, Robert .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :719-730
[67]   Global wildland fire emissions from 1960 to 2000 [J].
Schultz, Martin G. ;
Heil, Angelika ;
Hoelzemann, Judith J. ;
Spessa, Allan ;
Thonicke, Kirsten ;
Goldammer, Johann G. ;
Held, Alexander C. ;
Pereira, Jose M. C. ;
van het Bolscher, Maarten .
GLOBAL BIOGEOCHEMICAL CYCLES, 2008, 22 (02)
[68]   ESTIMATES OF GROSS AND NET FLUXES OF CARBON BETWEEN THE BIOSPHERE AND THE ATMOSPHERE FROM BIOMASS BURNING [J].
SEILER, W ;
CRUTZEN, PJ .
CLIMATIC CHANGE, 1980, 2 (03) :207-247
[69]   An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting [J].
Sofiev, M. ;
Vankevich, R. ;
Lotjonen, M. ;
Prank, M. ;
Petukhov, V. ;
Ermakova, T. ;
Koskinen, J. ;
Kukkonen, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (18) :6833-6847
[70]   The wildland fire emission inventory: western United States emission estimates and an evaluation of uncertainty [J].
Urbanski, S. P. ;
Hao, W. M. ;
Nordgren, B. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (24) :12973-13000