Genes essential to sodium-dependent bicarbonate transport in cyanobacteria - Function and phylogenetic analysis

被引:217
作者
Shibata, M
Katoh, H
Sonoda, M
Ohkawa, H
Shimoyama, M
Fukuzawa, H
Kaplan, A
Ogawa, T [1 ]
机构
[1] Nagoya Univ, Biosci Ctr, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[2] Kyoto Univ, Grad Sch Biostudies, Sakyo Ku, Kyoto 6068502, Japan
[3] Hebrew Univ Jerusalem, Dept Plant Sci, IL-91904 Jerusalem, Israel
关键词
D O I
10.1074/jbc.M112468200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cyanobacterium. Synechocystis sp. strain PCC 6803 possesses two CO2 uptake systems and two HCO3- transporters. We transformed a mutant impaired in CO2 uptake and in cmpA-D encoding a HCO3- transporter with a transposon inactivation library, and we recovered mutants unable to take up HCO3- and grow in low CO2 at pH 9.0. They are all tagged within slr1512 (designated sbtA). We show that SbtA-mediated transport is induced by low CO2, requires Na+, and plays the major role in HCO3- uptake in Synechocystis. Inactivation of slr1509 (homologous to ntpJ encoding a Na+/K+-translocating protein) abolished the ability of cells to grow at [Na+] higher than 100 m-m and severely depressed the activity of the SbtA-mediated HCO3- transport. We propose that the SbtA-mediated HCO3- transport is driven by DeltamuNa(+) across the plasma membrane, which is disrupted by inactivating ntpJ. Phylogenetic analyses indicated that two types of sbtA exist in various cyanobacterial strains, all of which possess ntpJ. The sbtA gene is the first one identified as essential to Na+-dependent HCO3- transport in photosynthetic organisms and may play a crucial role in carbon acquisition when CO2 supply is limited, or in Prochlorococcus strains that do not possess CO2 uptake systems or Cmp-dependent HCO3- transport.
引用
收藏
页码:18658 / 18664
页数:7
相关论文
共 35 条
[1]  
AGUSTIN V, 1992, NUCLEIC ACIDS RES, V20, P6331
[2]  
ALBA H, 1981, J BIOL CHEM, V256, P1905
[3]   NA+/H+ EXCHANGE IN THE CYANOBACTERIUM SYNECHOCOCCUS 6311 [J].
BLUMWALD, E ;
WOLOSIN, JM ;
PACKER, L .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1984, 122 (01) :452-459
[4]   A putative HCO-3 transporter in the cyanobacterium Synechococcus sp. strain PCC 7942 [J].
Bonfil, DJ ;
Ronen-Tarazi, M ;
Sültemeyer, D ;
Lieman-Hurwitz, J ;
Schatz, D ;
Kaplan, A .
FEBS LETTERS, 1998, 430 (03) :236-240
[5]   LIGHT-DEPENDENT DELTA-MUBARNA-GENERATION AND UTILIZATION IN THE MARINE CYANOBACTERIUM OSCILLATORIA-BREVIS [J].
BROWN, II ;
FADEYEV, SI ;
KIRIK, II ;
SEVERINA, II ;
SKULACHEV, VP .
FEBS LETTERS, 1990, 270 (1-2) :203-206
[6]  
Chelly Jamel, 1994, P97
[7]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[8]   Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J].
Emanuelsson, O ;
Nielsen, H ;
Brunak, S ;
von Heijne, G .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (04) :1005-1016
[9]   MONENSIN INHIBITION OF NA+-DEPENDENT HCO3(-) TRANSPORT DISTINGUISHES IT FROM NA+-INDEPENDENT HCO3(-) TRANSPORT AND PROVIDES EVIDENCE FOR NA+/HCO3(-) SYMPORT IN THE CYANOBACTERIUM SYNECHOCOCCUS UTEX-625 [J].
ESPIE, GS ;
KANDASAMY, RA .
PLANT PHYSIOLOGY, 1994, 104 (04) :1419-1428
[10]   The stpA gene from Synechocystis sp. strain PCC 6803 encodes the glucosylglycerol-phosphate phosphatase involved in cyanobacterial osmotic response to salt shock [J].
Hagemann, M ;
Schoor, A ;
Jeanjean, R ;
Zuther, E ;
Joset, F .
JOURNAL OF BACTERIOLOGY, 1997, 179 (05) :1727-1733