Modeling velocity in gradient flows with coupled-map lattices with advection

被引:16
作者
Lind, PG [1 ]
Corte-Real, J
Gallas, JAC
机构
[1] Univ Lisbon, Fac Ciencias, Inst Ciencia Aplicada & Tecnol, Unidade Meteorol & Climatol, P-1749016 Lisbon, Portugal
[2] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil
[3] Univ Evora, Ctr Geofis, P-7000 Evora, Portugal
[4] Univ Stuttgart, Inst Comp Anwendungen, D-70569 Stuttgart, Germany
关键词
D O I
10.1103/PhysRevE.66.016219
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a simple model to investigate large scale behavior of gradient flows based on a lattice of coupled maps which, in addition to the usual diffusive term, incorporates advection, as an asymmetry in the coupling between nearest neighbors. This diffusive-advective model predicts traveling patterns to have velocities obeying the same scaling as wind velocities in the atmosphere, regarding the advective parameter as a sort of geostrophic wind. In addition, the velocity and wavelength of traveling wave solutions are studied. In general, due to the presence of advection, two regimes are identified: for strong diffusion the velocity varies linearly with advection, while for weak diffusion a power law is found with a characteristic exponent proportional to the diffusion.
引用
收藏
页码:1 / 016219
页数:6
相关论文
共 43 条
[1]   SPATIAL COHERENCE AND TEMPORAL CHAOS IN MACROSCOPIC SYSTEMS WITH ASYMMETRICAL COUPLINGS [J].
ARANSON, I ;
GOLOMB, D ;
SOMPOLINSKY, H .
PHYSICAL REVIEW LETTERS, 1992, 68 (24) :3495-3498
[2]   THE ONSET AND SPATIAL DEVELOPMENT OF TURBULENCE IN FLOW SYSTEMS [J].
ARANSON, IS ;
GAPONOVGREKHOV, AV ;
RABINOVICH, MI .
PHYSICA D, 1988, 33 (1-3) :1-20
[3]   CHAOTIC QUANTIZATION OF FIELD-THEORIES [J].
BECK, C .
NONLINEARITY, 1995, 8 (03) :423-441
[4]  
CHATE H, 1997, LATTICE DYNAMICS, V103, P1
[5]  
Eshel G, 2000, J ATMOS SCI, V57, P3219, DOI 10.1175/1520-0469(2000)057<3219:MOEMRV>2.0.CO
[6]  
2
[7]   Characterization of the spatial complex behavior and transition to chaos in flow systems [J].
Falcioni, M ;
Vergni, D ;
Vulpiani, A .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 125 (1-2) :65-78
[8]  
FRITSCH JM, 1980, J ATMOS SCI, V37, P1734, DOI 10.1175/1520-0469(1980)037<1734:NPOCDM>2.0.CO
[9]  
2
[10]  
FRITSCH JM, 1980, J ATMOS SCI, V37, P1722, DOI 10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO