Post-translational modifications of Aquaporin 0 (AQP0) in the normal human lens: Spatial and temporal occurrence

被引:98
作者
Ball, LE
Garland, DL
Crouch, RK
Schey, KL [1 ]
机构
[1] Med Univ S Carolina, Dept Cell & Mol Pharmacol, Charleston, SC 29403 USA
[2] Med Univ S Carolina, Dept Ophthalmol, Charleston, SC 29403 USA
[3] NEI, Bethesda, MD 20205 USA
关键词
D O I
10.1021/bi0496034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Because of the lack of protein turnover in fiber cells of the ocular lens, Aquaporin 0 (AQP0), the most abundant membrane protein in the lens, undergoes extensive post-translational modification with fiber cell age. To map the distribution of modified forms of AQP0 within the lens, normal human lenses ranging in age from 34 to 38 were concentrically dissected into several cortical and nuclear sections. Membrane proteins still embedded in the membranes were digested with trypsin, and the resulting C-terminal peptides of AQP0 were analyzed by HPLC tandem mass spectrometry, permitting the identification of modifications and estimation of their abundance. Consistent with earlier reports, the major phosphorylation site was Ser 235, and the major sites of backbone cleavage occurred at residues 246 and 259. New findings suggest that cleavage at these sites may be a result of nonenzymatic truncation at asparagine residues. In addition, this approach revealed previously undetected sites of truncation at residues 249, 260, 261, and 262; phosphorylation at Ser 231 and to a lower extent at Ser 229; and racemization/isomerization Of L-Asp 243 to D-Asp and D-iso-Asp. The spatial distribution of C-terminally modified AQP0 within the lens indicated an increase in truncation and racemization/isomerization with fiber cell age, whereas the level of Ser 235 phosphorylation increased from the outer to inner cortex but decreased in the nucleus. Furthermore, the remarkably similar pattern and distribution of truncation products from lenses from three donors suggest specific temporal mechanisms for the modification of AQP0.
引用
收藏
页码:9856 / 9865
页数:10
相关论文
共 56 条
[1]   Structural evidence of human nuclear fiber compaction as a function of ageing and cataractogenesis [J].
Al-Ghoul, KJ ;
Nordgren, RK ;
Kuszak, AJ ;
Freel, CD ;
Costello, MJ ;
Kuszak, JR .
EXPERIMENTAL EYE RESEARCH, 2001, 72 (03) :199-214
[2]   CHARACTERIZATION OF THE OVINE-LENS PLASMA-MEMBRANE PROTEIN-KINASE SUBSTRATES [J].
ARNESON, ML ;
CHENG, HL ;
LOUIS, CF .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 234 (02) :670-679
[3]   Water permeability of C-terminally truncated aquaporin 0 (AQP0 1-243) observed in the aging human lens [J].
Ball, LE ;
Little, M ;
Nowak, MW ;
Garland, DL ;
Crouch, RK ;
Schey, KL .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 (11) :4820-4828
[4]   Lens organelle degradation [J].
Bassnett, S .
EXPERIMENTAL EYE RESEARCH, 2002, 74 (01) :1-6
[5]   HIGH-ACCURACY MOLECULAR MASS DETERMINATION OF PROTEINS USING MATRIX-ASSISTED LASER DESORPTION MASS-SPECTROMETRY [J].
BEAVIS, RC ;
CHAIT, BT .
ANALYTICAL CHEMISTRY, 1990, 62 (17) :1836-1840
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]  
BRENNAN TV, 1994, J BIOL CHEM, V269, P24586
[8]   Comparison of the water transporting properties of MIP and AQP1 [J].
Chandy, G ;
Zampighi, GA ;
Kreman, M ;
Hall, JE .
JOURNAL OF MEMBRANE BIOLOGY, 1997, 159 (01) :29-39
[9]   Functional impairment of lens aquaporin in two families with dominantly inherited cataracts [J].
Francis, P ;
Chung, JJ ;
Yasui, M ;
Berry, V ;
Moore, A ;
Wyatt, MK ;
Wistow, G ;
Bhattacharya, SS ;
Agre, P .
HUMAN MOLECULAR GENETICS, 2000, 9 (15) :2329-2334
[10]   Formation of four isomers at the Asp-151 residue of aged human αA-crystallin by natural aging [J].
Fujii, N ;
Takemoto, LJ ;
Momose, Y ;
Matsumoto, S ;
Hiroki, K ;
Akaboshi, M .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 265 (03) :746-751