Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem

被引:305
作者
Brazelton, William J.
Schrenk, Matthew O.
Kelley, Deborah S.
Baross, John A.
机构
[1] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA
[2] Univ Washington, Ctr Astrobiol & Early Evolut, Seattle, WA 98195 USA
关键词
D O I
10.1128/AEM.00574-06
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Hydrothermal venting and the formation of carbonate chimneys in the Lost City hydrothermal field (LCHF) are driven predominantly by serpentinization reactions and cooling of mantle rocks, resulting in a highly reducing, high-pH environment with abundant dissolved hydrogen and methane. Phylogenetic and terminal restriction fragment length polymorphism analyses of 16S rRNA genes in fluids and carbonate material from this site indicate the presence of organisms similar to sulfur-oxidizing, sulfate-reducing, and methane-oxidizing Bacteria as well as methanogenic and anaerobic methane-oxidizing Archaea. The presence of these metabolic groups indicates that microbial cycling of sulfur and methane may be the dominant biogeochemical processes active within this ultramafic rock-hosted environment. 16S rRNA gene sequences grouping within the Methylobacter and Thiomicrospira clades were recovered from a chemically diverse suite of carbonate chimney and fluid samples. In contrast, 16S rRNA genes corresponding to the Lost City Methanosarcinales phylotype were found exclusively in high-temperature chimneys, while a phylotype of anaerobic methanotrophic Archaea (ANME-1) was restricted to lower-temperature, less vigorously venting sites. A hyperthermophilic habitat beneath the LCHF may be reflected by 16S rRNA gene sequences belonging to Thermococcales and uncultured Crenarchaeota identified in vent fluids. The finding of a diverse microbial ecosystem supported by the interaction of high-temperature, high-pH fluids resulting from serpentinization reactions in the subsurface provides insight into the biogeochemistry of what may be a pervasive process in ultramafic subseafloor environments.
引用
收藏
页码:6257 / 6270
页数:14
相关论文
共 79 条
[1]   Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania [J].
Alain, K ;
Holler, T ;
Musat, F ;
Elvert, M ;
Treude, T ;
Krüger, M .
ENVIRONMENTAL MICROBIOLOGY, 2006, 8 (04) :574-590
[2]  
Allen DE, 2004, GEOCHIM COSMOCHIM AC, V68, P1347, DOI 10.1016/j.gca.2003.09.003
[3]   CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps [J].
Aloisi, G ;
Bouloubassi, I ;
Heijs, SK ;
Pancost, RD ;
Pierre, C ;
Damsté, JSS ;
Gottschal, JC ;
Forney, LJ ;
Rouchy, JM .
EARTH AND PLANETARY SCIENCE LETTERS, 2002, 203 (01) :195-203
[4]   Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°-16°E -: art. no. 1044 [J].
Bach, W ;
Banerjee, NR ;
Dick, HJB ;
Baker, ET .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2002, 3
[5]  
Bakermans C, 2002, MICROB ECOL, V44, P95, DOI [10.1007/s00248-002-0005-8, 10.1007/s00248-002-3011-y]
[6]   REMARKABLE ARCHAEAL DIVERSITY DETECTED IN A YELLOWSTONE-NATIONAL-PARK HOT-SPRING ENVIRONMENT [J].
BARNS, SM ;
FUNDYGA, RE ;
JEFFRIES, MW ;
PACE, NR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1609-1613
[7]  
Berndt ME, 1996, GEOLOGY, V24, P351, DOI 10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO
[8]  
2
[9]   A marine microbial consortium apparently mediating anaerobic oxidation of methane [J].
Boetius, A ;
Ravenschlag, K ;
Schubert, CJ ;
Rickert, D ;
Widdel, F ;
Gieseke, A ;
Amann, R ;
Jorgensen, BB ;
Witte, U ;
Pfannkuche, O .
NATURE, 2000, 407 (6804) :623-626
[10]   Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. [J].
Brinkhoff, T ;
Muyzer, G .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (10) :3789-3796