Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase

被引:357
作者
Zhu, YL
Pilon-Smits, EAH
Tarun, AS
Weber, SU
Jouanin, L
Terry, N
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[2] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA
[3] Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 94720 USA
[4] INRA, Biol Cellulaire Lab, F-78026 Versailles, France
关键词
D O I
10.1104/pp.121.4.1169
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To investigate rate-limiting factors for glutathione and phytochelatin (PC) production and the importance of these compounds for heavy metal tolerance, Indian mustard (Brassica juncea) was genetically engineered to overexpress the Escherichia coli gshl gene encoding gamma-glutamylcysteine synthetase (gamma-ECS), targeted to the plastids. The gamma-ECS transgenic seedlings showed increased tolerance to Cd and had higher concentrations of PCs, gamma-GluCys, glutathione, and total non-protein thiols compared with wild-type (WT) seedlings. When tested in a hydroponic system, gamma-ECS mature plants accumulated more Cd than WT plants: shoot Cd concentrations were 40% to 90% higher. In spite of their higher tissue Cd concentration, the gamma-ECS plants grew better in the presence of Cd than WT. We conclude that overexpression of gamma-ECS increases biosynthesis of glutathione and PCs, which in turn enhances Cd tolerance and accumulation. Thus, overexpression of gamma-ECS appears to be a promising strategy for the production of plants with superior heavy metal phytoremediation capacity.
引用
收藏
页码:1169 / 1177
页数:9
相关论文
共 39 条
[1]  
[Anonymous], 1994, PLANTS CHEM ELEMENTS
[2]   Modification of thiol contents in poplars (Populus tremula x P-alba) overexpressing enzymes involved in glutathione synthesis [J].
Arisi, ACM ;
Noctor, G ;
Foyer, CH ;
Jouanin, L .
PLANTA, 1997, 203 (03) :362-372
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast [J].
Clemens, S ;
Kim, EJ ;
Neumann, D ;
Schroeder, JI .
EMBO JOURNAL, 1999, 18 (12) :3325-3333
[5]   Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress [J].
Creissen, G ;
Firmin, J ;
Fryer, M ;
Kular, B ;
Leyland, N ;
Reynolds, H ;
Pastori, G ;
Wellburn, F ;
Baker, N ;
Wellburn, A ;
Mullineaux, P .
PLANT CELL, 1999, 11 (07) :1277-1291
[6]   RHIZOFILTRATION - THE USE OF PLANTS TO REMOVE HEAVY-METALS FROM AQUEOUS STREAMS [J].
DUSHENKOV, V ;
KUMAR, PBAN ;
MOTTO, H ;
RASKIN, I .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1995, 29 (05) :1239-1245
[7]   TISSUE SULFHYDRYL GROUPS [J].
ELLMAN, GL .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1959, 82 (01) :70-77
[8]   QUANTITATIVE ELEMENTAL ANALYSES BY PLASMA EMISSION-SPECTROSCOPY [J].
FASSEL, VA .
SCIENCE, 1978, 202 (4364) :183-191
[9]   OVEREXPRESSION OF GLUTATHIONE-REDUCTASE BUT NOT GLUTATHIONE SYNTHETASE LEADS TO INCREASES IN ANTIOXIDANT CAPACITY AND RESISTANCE TO PHOTOINHIBITION IN POPLAR TREES [J].
FOYER, CH ;
SOURIAU, N ;
PERRET, S ;
LELANDAIS, M ;
KUNERT, KJ ;
PRUVOST, C ;
JOUANIN, L .
PLANT PHYSIOLOGY, 1995, 109 (03) :1047-1057
[10]   Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress [J].
Gallego, SM ;
Benavides, MP ;
Tomaro, ML .
PLANT SCIENCE, 1996, 121 (02) :151-159