Self-regulation mechanism of an ecosystem in a non-Gaussian fluctuation regime

被引:100
作者
Ciuchi, S
dePasquale, F
Spagnolo, B
机构
[1] UNIV AQUILA,DIPARTIMENTO FIS,I-67010 COPPITO,ITALY
[2] UNIV PALERMO,IST NAZL FIS MAT,UNITA PALERMO,I-90128 PALERMO,ITALY
[3] UNIV PALERMO,DIPARTIMENTO ENERGET & APPLICAZ FIS,I-90128 PALERMO,ITALY
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 01期
关键词
D O I
10.1103/PhysRevE.54.706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a dynamical model for an ecological network of many interacting species. We consider a Malthus-Verhulst type of self-regulation mechanism. In the framework of the mean field theory we study the nonlinear relaxation in three different cases: (a) towards the equilibrium state, (b) towards the absorbing barrier, (c) at the critical point. We obtain asymptotic behavior in all different cases for the time average of the process. The dynamical behavior of the system, in the limit of infinitely many interacting species, is investigated in the stability and instability conditions and theoretical results are compared with numerical simulations.
引用
收藏
页码:706 / 716
页数:11
相关论文
共 7 条
  • [1] [Anonymous], 1984, SPRINGER SERIES SYNE
  • [2] NON-LINEAR DYNAMICS OF SYSTEMS COUPLED WITH EXTERNAL NOISE - SOME EXACT RESULTS
    BRENIG, L
    BANAI, N
    [J]. PHYSICA D, 1982, 5 (2-3): : 208 - 226
  • [3] NONLINEAR RELAXATION IN THE PRESENCE OF AN ABSORBING BARRIER
    CIUCHI, S
    DEPASQUALE, F
    SPAGNOLO, B
    [J]. PHYSICAL REVIEW E, 1993, 47 (06): : 3915 - 3926
  • [4] DEAKIN MA, 1975, MATH BIOSCI, V40, P319
  • [5] THE IMMUNE-SYSTEM, ADAPTATION, AND MACHINE LEARNING
    FARMER, JD
    PACKARD, NH
    PERELSON, AS
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1986, 22 (1-3) : 187 - 204
  • [6] Gihman I., 1972, STOCHASTIC DIFFERENT
  • [7] SOLVABLE MODEL OF A COMPLEX ECOSYSTEM WITH RANDOMLY INTERACTING SPECIES
    RIEGER, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (17): : 3447 - 3460