Deterministic quantum teleportation with atoms

被引:842
作者
Riebe, M
Häffner, H
Roos, CF
Hänsel, W
Benhelm, J
Lancaster, GPT
Körber, TW
Becher, C
Schmidt-Kaler, F
James, DFV
Blatt, R
机构
[1] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
[2] Los Alamos Natl Lab, Div Theoret T 4, Los Alamos, NM 87545 USA
[3] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1038/nature02570
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another ( by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown(1) that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated(2-6), but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal(1), we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.
引用
收藏
页码:734 / 737
页数:4
相关论文
共 18 条
[1]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[2]   Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels [J].
Boschi, D ;
Branca, S ;
De Martini, F ;
Hardy, L ;
Popescu, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (06) :1121-1125
[3]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[4]   Quantum teleportation with a quantum dot single photon source [J].
Fattal, D ;
Diamanti, E ;
Inoue, K ;
Yamamoto, Y .
PHYSICAL REVIEW LETTERS, 2004, 92 (03) :4
[5]   Unconditional quantum teleportation [J].
Furusawa, A ;
Sorensen, JL ;
Braunstein, SL ;
Fuchs, CA ;
Kimble, HJ ;
Polzik, ES .
SCIENCE, 1998, 282 (5389) :706-709
[6]   Nonlocality criteria for quantum teleportation [J].
Gisin, N .
PHYSICS LETTERS A, 1996, 210 (03) :157-159
[7]   Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations [J].
Gottesman, D ;
Chuang, IL .
NATURE, 1999, 402 (6760) :390-393
[8]   Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer [J].
Gulde, S ;
Riebe, M ;
Lancaster, GPT ;
Becher, C ;
Eschner, J ;
Häffner, H ;
Schmidt-Kaler, F ;
Chuang, IL ;
Blatt, R .
NATURE, 2003, 421 (6918) :48-50
[9]   SPIN ECHOES [J].
HAHN, EL .
PHYSICAL REVIEW, 1950, 80 (04) :580-594
[10]   Architecture for a large-scale ion-trap quantum computer [J].
Kielpinski, D ;
Monroe, C ;
Wineland, DJ .
NATURE, 2002, 417 (6890) :709-711