A revised view of cardiac sodium channel "blockade" in the long-QT syndrome

被引:53
作者
Kambouris, NG
Nuss, HB
Johns, DC
Marbán, E
Tomaselli, GF
Balser, JR
机构
[1] Vanderbilt Univ, Sch Med, Dept Anesthesiol, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Sch Med, Dept Pharmacol, Nashville, TN 37232 USA
[3] Johns Hopkins Univ, Sch Med, Dept Anesthesiol, Baltimore, MD 21205 USA
[4] Johns Hopkins Univ, Sch Med, Inst Mol Cardiobiol, Baltimore, MD 21205 USA
关键词
D O I
10.1172/JCI9212
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Mutations in SCN5A, encoding the cardiac sodium (Na) channel, are linked to a form of the congenital long-QT syndrome (LQT3) that provokes lethal ventricular arrhythmias. These autosomal dominant mutations disrupt Na channel function, inhibiting channel inactivation, thereby causing a sustained ionic current that delays cardiac repolarization. Sodium channel-blocking antiarrhythmics, such as lidocaine, potently inhibit this pathologic Na current (I-Na) and are being evaluated in patients with LQT3. The mechanism underlying this effect is unknown, although high-affinity "block" of the open Na channel pore has been proposed. Here we report that a recently identified LQT3 mutation (R1623Q) imparts unusual lidocaine sensitivity to the Na channel that is attributable to its altered functional behavior. Studies of lidocaine on individual R1623Q single-channel openings indicate that the open-time distribution is not changed, indicating the drug does not block the open pore as proposed previously. Rather, the mutant channels have a propensity to inactivate without ever opening ("closed-state inactivation"), and lidocaine augments this gating behavior. An allosteric gating model incorporating closed-state inactivation recapitulates the effects of lidocaine on pathologic I-Na These findings explain the unusual drug sensitivity of R1623Q and provide a general and unanticipated mechanism for understanding how Na channel-blocking agents may suppress the pathologic, sustained Na current induced by LQT3 mutations.
引用
收藏
页码:1133 / 1140
页数:8
相关论文
共 39 条
[1]   Lidocaine block of LQT-3 mutant human Na+ channels [J].
An, RH ;
Bangalore, R ;
Rosero, SZ ;
Kass, RS .
CIRCULATION RESEARCH, 1996, 79 (01) :103-108
[2]   GLOBAL PARAMETER OPTIMIZATION FOR CARDIAC POTASSIUM CHANNEL GATING MODELS [J].
BALSER, JR ;
RODEN, DM ;
BENNETT, PB .
BIOPHYSICAL JOURNAL, 1990, 57 (03) :433-444
[3]   Local anesthetics as effectors of allosteric gating - Lidocaine effects on inactivation-deficient rat skeletal muscle Na channels [J].
Balser, JR ;
Nuss, HB ;
Orias, DW ;
Johns, DC ;
Marban, E ;
Tomaselli, GF ;
Lawrence, JH .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 98 (12) :2874-2886
[4]   ON THE MOLECULAR NATURE OF THE LIDOCAINE RECEPTOR OF CARDIAC NA+ CHANNELS - MODIFICATION OF BLOCK BY ALTERATIONS IN THE ALPHA-SUBUNIT III-IV INTERDOMAIN [J].
BENNETT, PB ;
VALENZUELA, C ;
CHEN, LQ ;
KALLEN, RG .
CIRCULATION RESEARCH, 1995, 77 (03) :584-592
[5]   MOLECULAR MECHANISM FOR AN INHERITED CARDIAC-ARRHYTHMIA [J].
BENNETT, PB ;
YAZAWA, K ;
MAKITA, N ;
GEORGE, AL .
NATURE, 1995, 376 (6542) :683-685
[6]   SODIUM-CHANNEL MUTATIONS IN PARAMYOTONIA-CONGENITA UNCOUPLE INACTIVATION FROM ACTIVATION [J].
CHAHINE, M ;
GEORGE, AL ;
ZHOU, M ;
JI, S ;
SUN, WJ ;
BARCHI, RL ;
HORN, R .
NEURON, 1994, 12 (02) :281-294
[7]   A unique role for the S4 segment of domain 4 in the inactivation of sodium channels [J].
Chen, LQ ;
Santarelli, V ;
Horn, R ;
Kallen, RG .
JOURNAL OF GENERAL PHYSIOLOGY, 1996, 108 (06) :549-556
[8]   Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia [J].
Clancy, CE ;
Rudy, Y .
NATURE, 1999, 400 (6744) :566-569
[9]   Multiple mechanisms of Na+ channel-linked long-QT syndrome [J].
Dumaine, R ;
Wang, Q ;
Keating, MT ;
Hartmann, HA ;
Schwartz, PJ ;
Brown, AM ;
Kirsch, GE .
CIRCULATION RESEARCH, 1996, 78 (05) :916-924
[10]   Two human paramyotonia congenita mutations have opposite effects on lidocaine block of Na+ channels expressed in a mammalian cell line [J].
Fan, Z ;
George, AL ;
Kyle, JW ;
Makielski, JC .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 496 (01) :275-286