Intermediate prerequisites for E-infinity theory (Further recommended reading in nonlinear dynamics and mathematical physics)

被引:38
作者
El Naschie, M. Saladin [1 ]
机构
[1] Univ Alexandria, Dept Phys, Alexandria, Egypt
关键词
D O I
10.1016/j.chaos.2006.04.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper presents an intermediate level prerequisite for understanding E-infinity theory as applied to particle physics. It is the sequel to an earlier elementary level prerequisite paper (EI Naschie MS. Elementary prerequisite for E-infinity. Chaos, Solitons & Fractals 2006;30(3):579-605). The work ends with a somewhat detailed discussion of the role which a Lagrangian type formulation could play in E-infinity theory. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:622 / 628
页数:7
相关论文
共 15 条
[1]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[2]   Elementary prerequisites for E-infinity (Recommended background readings in nonlinear dynamics, geometry and topology [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :579-605
[3]  
El Naschie M.S., 1990, Stress, stability, and chaos in structural engineering: an energy approach
[4]   An elementary proof for the nine missing particles of the standard model [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2006, 28 (05) :1136-1138
[5]   Superstrings, entropy and the elementary particles content of the standard model [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2006, 29 (01) :48-54
[6]   A review of E infinity theory and the mass spectrum of high energy particle physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :209-236
[7]   THE PHYSICS OF CHAOS AND RELATED PROBLEMS - SUMMARY SESSION [J].
GOLLUB, JP ;
HOHENBERG, PC .
PHYSICA SCRIPTA, 1985, T9 :209-216
[8]  
GREEN M, 1990, PARTICLES FORCES HEA, P183
[9]  
Green M.B., 1933, SUPERSTRING THEORY
[10]  
He JH, 2005, INT J NONLIN SCI NUM, V6, P93