Quasi-harmonicity and power spectra in the FPU model

被引:4
作者
Alabiso, C
Casartelli, M
机构
[1] Univ Parma, Dipartimento Fis, I-43100 Parma, Italy
[2] Ist Nazl Fis Nucl, Grp Collegato Parma, Parma, Italy
[3] INFM, Parma, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 05期
关键词
D O I
10.1088/0305-4470/33/5/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We evaluate the power spectra of the time series for the following simple observables in the Fermi-Pasta-Ulam model: harmonic energy kinetic energy, microcanonical density, Frenet-Serret curvature and the Lyapunov variable. For some of these observables, also in the stochastic regime, the spectra show a well defined quasi-harmonic structure, with harmonic frequencies shifted with a single rescaling factor, as calculated in a previous paper. Even higher frequencies are excited: as replicas of the harmonic window at low energy, to end up with a smooth distribution at high energy, showing a power law behaviour (flicker noise). In the intermediate region the shape depends on the observables, but in all cases the crossover is the maximum of the shifted harmonic spectrum. This establishes an intrinsic short-time scale depending only on the energy density, as does the frequency rescaling factor For the curvature, we also evaluate the standard deviation: above threshold, at increasing energy, it decreases exactly as the inverse of the rescaling factor. This can be interpreted as a focalization around 'effective tori' of a harmonic-like regime which apparently coexist with the chaotic motion.
引用
收藏
页码:831 / 839
页数:9
相关论文
共 15 条
  • [1] NEARLY SEPARABLE BEHAVIOR OF FERMI-PASTA-ULAM CHAINS THROUGH THE STOCHASTICITY THRESHOLD
    ALABISO, C
    CASARTELLI, M
    MARENZONI, P
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (1-2) : 451 - 471
  • [2] High-order curvatures and harmonicity regression
    Alabiso, C
    Casartelli, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (20): : 7009 - 7020
  • [3] Curvature, torsion, microcanonical density and stochastic transition
    Alabiso, C
    Besagni, N
    Casartelli, M
    Marenzoni, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14): : 3733 - 3747
  • [4] THERMODYNAMIC LIMIT BEYOND THE STOCHASTICITY THRESHOLD IN NONLINEAR CHAINS
    ALABISO, C
    CASARTELLI, M
    MARENZONI, P
    [J]. PHYSICS LETTERS A, 1993, 183 (04) : 305 - 310
  • [5] KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS
    BENETTIN, G
    GALGANI, L
    STRELCYN, JM
    [J]. PHYSICAL REVIEW A, 1976, 14 (06): : 2338 - 2345
  • [6] GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS
    CASETTI, L
    LIVI, R
    PETTINI, M
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (03) : 375 - 378
  • [7] TIME-SCALE TO ERGODICITY IN THE FERMI-PASTA-ULAM SYSTEM
    DELUCA, J
    LICHTENBERG, AJ
    LIEBERMAN, MA
    [J]. CHAOS, 1995, 5 (01) : 283 - 297
  • [8] EQUIPARTITION THRESHOLDS IN CHAINS OF ANHARMONIC-OSCILLATORS
    KANTZ, H
    LIVI, R
    RUFFO, S
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) : 627 - 643
  • [9] Heat conduction in chains of nonlinear oscillators
    Lepri, S
    Livi, R
    Politi, A
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (10) : 1896 - 1899
  • [10] On the anomalous thermal conductivity of one-dimensional lattices
    Lepri, S
    Livi, R
    Politi, A
    [J]. EUROPHYSICS LETTERS, 1998, 43 (03): : 271 - 276