LIGSITEcsc:: predicting ligand binding sites using the Connolly surface and degree of conservation

被引:366
作者
Huang, Bingding [1 ]
Schroeder, Michael [1 ]
机构
[1] Tech Univ Dresden, Bioinformat Grp, Ctr Biotechnol, D-8027 Dresden, Germany
关键词
D O I
10.1186/1472-6807-6-19
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Background: Identifying pockets on protein surfaces is of great importance for many structure-based drug design applications and protein-ligand docking algorithms. Over the last ten years, many geometric methods for the prediction of ligand-binding sites have been developed. Results: We present LIGSITE(csc), an extension and implementation of the LIGSITE algorithm. LIGSITE(csc) is based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface residues. We compare our algorithm to four other approaches, LIGSITE, CAST, PASS, and SURFNET, and evaluate all on a dataset of 48 unbound/bound structures and 210 bound-structures. LIGSITE(csc) performs slightly better than the other tools and achieves a success rate of 71% and 75%, respectively. Conclusion: The use of the Connolly surface leads to slight improvements, the prediction re-ranking by conservation to significant improvements of the binding site predictions. A web server for LIGSITEcsc and its source code is available at scoppi.biotec.tu-dresden.de/pocket.
引用
收藏
页数:11
相关论文
共 34 条
[1]   Ten thousand interactions for the molecular biologist [J].
Aloy, P ;
Russell, RB .
NATURE BIOTECHNOLOGY, 2004, 22 (10) :1317-1321
[2]   Automated structure-based prediction of functional sites in proteins: Applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking [J].
Aloy, P ;
Querol, E ;
Aviles, FX ;
Sternberg, MJE .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 311 (02) :395-408
[3]   ConSurf: An algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information [J].
Armon, A ;
Graur, D ;
Ben-Tal, N .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (01) :447-463
[4]   Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces [J].
Aytuna, AS ;
Gursoy, A ;
Keskin, O .
BIOINFORMATICS, 2005, 21 (12) :2850-2855
[5]   Choosing negative examples for the prediction of protein-protein interactions [J].
Ben-Hur, A ;
Noble, WS .
BMC BIOINFORMATICS, 2006, 7 (Suppl 1)
[6]  
BERCHMANSKI A, 2002, PROTEIN SCI, V11, P571
[7]   CASTp: Computed atlas of surface topography of proteins [J].
Binkowski, TA ;
Naghibzadeh, S ;
Liang, J .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3352-3355
[8]   Improved prediction of protein-protein binding sites using a support vector machines approach [J].
Bradford, JR ;
Westhead, DR .
BIOINFORMATICS, 2005, 21 (08) :1487-1494
[9]   Fast prediction and visualization of protein binding pockets with PASS [J].
Brady, GP ;
Stouten, PFW .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2000, 14 (04) :383-401
[10]   Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces [J].
Burgoyne, Nicholas J. ;
Jackson, Richard M. .
BIOINFORMATICS, 2006, 22 (11) :1335-1342