Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles

被引:121
作者
Pastur, L [1 ]
Shcherbina, M [1 ]
机构
[1] UNIV PARIS 07,UFR MATH,F-75251 PARIS,FRANCE
关键词
random matrices; local asymptotic regime; universality conjecture; orthogonal polynomial technique;
D O I
10.1007/BF02180200
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is devoted to the rigorous proof of the universality conjecture of random matrix theory, according to which the limiting eigenvalue statistics of n x n random matrices within spectral intervals of O(n(-1)) is determined by the type of matrix (real symmetric, Hermitian, or quaternion real) and by the density of states. We prove this conjecture for a certain class of the Hermitian matrix ensembles that arise in the quantum field theory and have the unitary invariant distribution defined by a certain function (the potential in the quantum field theory) satisfying some regularity conditions.
引用
收藏
页码:109 / 147
页数:39
相关论文
共 18 条
[1]  
Bessis D., 1980, Adv. Appl. Math., V1, P109, DOI 10.1016/0196-8858(80)90008-1
[2]   UNIVERSALITY OF THE CORRELATIONS BETWEEN EIGENVALUES OF LARGE RANDOM MATRICES [J].
BREZIN, E ;
ZEE, A .
NUCLEAR PHYSICS B, 1993, 402 (03) :613-627
[3]   2-DIMENSIONAL QUANTUM-GRAVITY, MATRIX MODELS AND STRING THEORY [J].
DEMETERFI, K .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (07) :1185-1244
[4]   ON THE STATISTICAL-MECHANICS APPROACH IN THE RANDOM-MATRIX THEORY - INTEGRATED DENSITY-OF-STATES [J].
DEMONVEL, AB ;
PASTUR, L ;
SHCHERBINA, M .
JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (3-4) :585-611
[5]   CLASS OF MATRIX ENSEMBLES [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (01) :90-&
[6]  
EYNARD B, 1993, SPHT93999
[7]  
Fernandez R., 1992, RANDOM WALKS CRITICA
[8]   HIGHER ORDER SPACING DISTRIBUTIONS FOR CLASS OF UNITARY ENSEMBLES [J].
FOX, D ;
KAHN, PB .
PHYSICAL REVIEW B, 1964, 134 (5B) :1151-+
[9]  
HACKENBROICH G, 1994, UNIVERSALITY RANDOM
[10]  
LEFF H, 1964, J MATH PHYS, V5, P761