A nitrate-inducible ferredoxin in maize roots - Genomic organization and differential expression of two nonphotosynthetic ferredoxin isoproteins

被引:55
作者
Matsumura, T [1 ]
Sakakibara, H [1 ]
Nakano, R [1 ]
Kimata, Y [1 ]
Sugiyama, T [1 ]
Hase, T [1 ]
机构
[1] NAGOYA UNIV,SCH AGR SCI,DEPT APPL BIOL SCI,NAGOYA,AICHI 46401,JAPAN
关键词
D O I
10.1104/pp.114.2.653
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We have identified and characterized a nitrate-inducible ferredoxin (Fd) in maize (Zea mays L.) roots by structural analysis of the purified protein and by cloning of its cDNA and gene. In maize Fd isoproteins are encoded by a small multigene family, and the nitrate-inducible Fd was identified as a novel isoprotein, designated Fd VI, which differed from any Fd I to Fd V identified to date. In the roots of seedlings cultured without nitrate, Fd VI was undetectable. However, during the induction of the capacity for nitrate assimilation, the amount of Fd VI increased markedly within 24 h. Concurrently, the revel of transcript for Fd VI increased, but more quickly, reaching a maximal level within 2 h with kinetics similar to those of nitrite reductase and Fd-NADP(+) reductase. Fd III was constitutively expressed in roots, and no such changes at the protein and mRNA levels were observed during the nitrate induction. In the 5' flanking region of the gene for Fd VI only, we identified NIT-2 motifs, which are widely found in genes for enzymes related to nitrogen metabolism. These data indicate that Fd VI is co-induced with the previously characterized enzymes involved in nitrate assimilation, and they suggest that the novel Fd isoprotein, distinct from the constitutively expressed Fd, might play an important role as an electron carrier from NADPH to nitrite reductase and other Fd-dependent enzymes in root plastids.
引用
收藏
页码:653 / 660
页数:8
相关论文
共 47 条
[1]   A non-photosynthetic ferredoxin gene is induced by ethylene in Citrus organs [J].
Alonso, JM ;
Chamarro, J ;
Granell, A .
PLANT MOLECULAR BIOLOGY, 1995, 29 (06) :1211-1221
[2]   THE GENOMIC ORGANIZATION OF THE GENE ENCODING A NITRATE-INDUCIBLE FERREDOXIN-NADP(+) OXIDOREDUCTASE FROM RICE ROOTS [J].
AOKI, H ;
TANAKA, K ;
IDA, S .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1995, 1229 (03) :389-392
[3]  
Aoki H., 1994, BIOCHIM BIOPHYS ACTA, V1183, P552
[4]  
Arnon DI, 1940, SOIL SCI, V50, P463
[5]   LIGHT-REGULATED EXPRESSION OF THE ARABIDOPSIS-THALIANA FERREDOXIN GENE REQUIRES SEQUENCES UPSTREAM AND DOWNSTREAM OF THE TRANSCRIPTION INITIATION SITE [J].
BOVY, A ;
VANDENBERG, C ;
DEVRIEZE, G ;
THOMPSON, WF ;
WEISBEEK, P ;
SMEEKENS, S .
PLANT MOLECULAR BIOLOGY, 1995, 27 (01) :27-39
[6]   REDUCTANT FOR GLUTAMATE SYNTHASE IS GENERATED BY THE OXIDATIVE PENTOSE-PHOSPHATE PATHWAY IN NONPHOTOSYNTHETIC ROOT PLASTIDS [J].
BOWSHER, CG ;
BOULTON, EL ;
ROSE, JKC ;
NAYAGAM, S ;
EMES, MJ .
PLANT JOURNAL, 1992, 2 (06) :893-898
[7]   NITRITE REDUCTION AND CARBOHYDRATE-METABOLISM IN PLASTIDS PURIFIED FROM ROOTS OF PISUM-SATIVUM-L [J].
BOWSHER, CG ;
HUCKLESBY, DP ;
EMES, MJ .
PLANTA, 1989, 177 (03) :359-366
[8]   INDUCTION OF FERREDOXIN-NADP+ OXIDOREDUCTASE AND FERREDOXIN SYNTHESIS IN PEA ROOT PLASTIDS DURING NITRATE ASSIMILATION [J].
BOWSHER, CG ;
HUCKLESBY, DP ;
EMES, MJ .
PLANT JOURNAL, 1993, 3 (03) :463-467
[9]   NITRATE - NUTRIENT AND SIGNAL FOR PLANT-GROWTH [J].
CRAWFORD, NM .
PLANT CELL, 1995, 7 (07) :859-868
[10]  
ELLIOTT RC, 1989, PLANT CELL, V1, P691, DOI 10.1105/tpc.1.7.691