Ridge-valley lines on meshes via implicit surface fitting

被引:282
作者
Ohtake, Y [1 ]
Belyaev, A
Seidel, HP
机构
[1] RIKEN, Wako, Saitama 35101, Japan
[2] Max Planck Inst Informat, Saarbrucken, Germany
来源
ACM TRANSACTIONS ON GRAPHICS | 2004年 / 23卷 / 03期
关键词
ridges; curvature extrema; implicit surface fitting;
D O I
10.1145/1015706.1015768
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a simple and effective method for detecting view- and scale-independent ridge-valley lines defined via first- and second-order curvature derivatives on shapes approximated by dense triangle meshes. A high-quality estimation of high-order surface derivatives is achieved by combining multi-level implicit surface fitting and finite difference approximations. We demonstrate that the ridges and valleys are geometrically and perceptually salient surface features and, therefore, can be potentially used for shape recognition, coding, and quality evaluation purposes.
引用
收藏
页码:609 / 612
页数:4
相关论文
共 29 条
[1]  
[Anonymous], 1992, MODELING CURVES SURF
[2]  
BELYAEV AG, 1997, TOPOLOGICAL MODELING, P375
[3]  
Carr JC, 2001, COMP GRAPH, P67, DOI 10.1145/383259.383266
[4]  
Cazals F., 2003, Symposium on Geometry Processing, P177
[5]  
Cohen-Steiner D., 2003, P 19 ANN S COMP GEOM, P312
[6]   Suggestive contours for conveying shape [J].
DeCarlo, D ;
Finkelstein, A ;
Rusinkiewicz, S ;
Santella, A .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :848-855
[7]   Multistep scattered data interpolation using compactly supported radial basis functions [J].
Floater, MS ;
Iske, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) :65-78
[8]   Interpolation in ortholattices [J].
Goldstern, M .
ALGEBRA UNIVERSALIS, 2001, 45 (01) :63-70
[9]   Computational anatomy: An emerging discipline [J].
Grenander, U ;
Miller, MI .
QUARTERLY OF APPLIED MATHEMATICS, 1998, 56 (04) :617-694
[10]  
Hallinan P. W., 1999, Two and Three-dimensional Patterns of the Face