Thermal and rheological properties of carbon nanotube-in-oil dispersions

被引:169
作者
Yang, Ying [1 ]
Grulke, Eric A.
Zhang, Z. George
Wu, Gefei
机构
[1] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA
[2] Valvoline, Ashland Inc, Lexington, KY 40512 USA
关键词
D O I
10.1063/1.2193161
中图分类号
O59 [应用物理学];
学科分类号
摘要
Prior work on asymmetric thermally conducting nanoparticle dispersions has shown that it is possible to raise the thermal conductivity of low thermal conductivity liquids at modest volume fractions of nanoparticles. Stable and reproducible nanotube dispersions require careful control of the dispersant chemistry as well as an understanding of their response to input energy. This paper addresses the effects of dispersant concentration, dispersing energy, and nanoparticle loading on thermal conductivity and steady shear viscosity of nanotube-in-oil dispersions. The thermal conductivity and viscosity of these dispersions correlate with each other and vary with the size of large scale agglomerates, or clustered nanoparticles, in the fluids. Fluids with large scale agglomerates have high thermal conductivities. Dispersion energy, applied by sonication, can decrease agglomerate size, but also breaks the nanotubes, decreasing both the thermal conductivity and viscosity of nanotube dispersions. Developing practical heat transfer fluids containing nanoparticles may require a balance between the thermal conductivity and viscosity of the dispersions. (c) 2006 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 32 条
[11]  
Doi M., 1986, THEORY POLYM DYNAMIC
[12]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055
[13]   Adsorption of polyisobutenylsuccinimide derivatives at a solid-hydrocarbon interface [J].
Dubois-Clochard, MC ;
Durand, JP ;
Delfort, B ;
Gateau, P ;
Barré, L ;
Blanchard, I ;
Chevalier, Y ;
Gallo, R .
LANGMUIR, 2001, 17 (19) :5901-5910
[14]   Dispersion and solubilization of carbon nanotubes [J].
Fu, KF ;
Sun, YP .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2003, 3 (05) :351-364
[15]   Dispersion of carbon nanotubes in liquids [J].
Hilding, J ;
Grulke, EA ;
Zhang, ZG ;
Lockwood, F .
JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2003, 24 (01) :1-41
[16]   Role of Brownian motion in the enhanced thermal conductivity of nanofluids [J].
Jang, SP ;
Choi, SUS .
APPLIED PHYSICS LETTERS, 2004, 84 (21) :4316-4318
[17]   Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration [J].
Kashiwagi, T ;
Du, FM ;
Winey, KI ;
Groth, KA ;
Shields, JR ;
Bellayer, SP ;
Kim, H ;
Douglas, JF .
POLYMER, 2005, 46 (02) :471-481
[18]   Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) [J].
Keblinski, P ;
Phillpot, SR ;
Choi, SUS ;
Eastman, JA .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (04) :855-863
[19]   A rheological study of concentrated aqueous nanotube dispersions [J].
Kinloch, IA ;
Roberts, SA ;
Windle, AH .
POLYMER, 2002, 43 (26) :7483-7491
[20]  
Krieger I. M., 1972, Advances in Colloid and Interface Science, V3, P111, DOI 10.1016/0001-8686(72)80001-0