Non-aqueous routes to crystalline metal oxide nanoparticles: Formation mechanisms and applications

被引:121
作者
Niederberger, Markus
Garnweitner, Georg
Pinna, Nicola
Neri, Giovanni
机构
[1] Max Planck Inst Colloids & Interfaces, D-14424 Potsdam, Germany
[2] Univ Halle Wittenberg, Inst Anorgan Chem, D-06120 Halle, Germany
[3] Univ Messina, Dept Ind Chem & Mat Engn, I-98166 Messina, Italy
关键词
D O I
10.1016/j.progsolidstchem.2005.11.032
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We developed novel reaction approaches using non-aqueous and halide-free procedures to synthesize a wide variety of different metal oxide nanoparticles including the binary metal oxides of groups IV and V, SnO2, In2O3, FeOx, ZnO, Ga2O3, perovskites (BaTiO3, SrTiO3, (Ba,Sr)TiO3, BaZrO3) and related compounds (LiNbO3). These routes involve the solvothermal reaction of metal oxide precursors such as metal alkoxides or metal acetylacetonates either with benzyl alcohol, various ketones or benzylamine. The careful characterization of the organic species in the final reaction mixtures provides information about possible condensation mechanisms. In the case of HfO2, a simple ether elimination process between two alkoxide precursors leads to the formation of the Hf-O-Hf bond, whereas BaTiO3 formation occurs via a mechanism involving a C-C bond formation between the isopropoxy ligand and the solvent benzyl alcohol. Binary metal oxide nanoparticles using the reaction of metal acetylacetonates with benzylamine are generated from a mechanism encompassing solvolysis of the acetylacetonate ligand, involving C-C bond cleavage, as well as ketimine and aldol-like condensation steps. The use of non-reducing solvents instead of alcohols allows the preparation of lead-based metal oxides like Pb(Zr,Ti)O-3. SnO2 and In2O3, known to be sensitive to reducing and oxidizing gases, respectively, have been tested as possible gas sensing devices and they showed good sensitivity and selectivity. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 68 条
[51]  
Rao C. N. R., 1995, TRANSITION METAL OXI
[52]   Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale [J].
Redl, FX ;
Black, CT ;
Papaefthymiou, GC ;
Sandstrom, RL ;
Yin, M ;
Zeng, H ;
Murray, CB ;
O'Brien, SP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (44) :14583-14599
[53]   A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides [J].
Rockenberger, J ;
Scher, EC ;
Alivisatos, AP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (49) :11595-11596
[54]   In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals [J].
Seo, JW ;
Jun, YW ;
Ko, SJ ;
Cheon, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (12) :5389-5391
[55]  
Seo WS, 2004, ANGEW CHEM INT EDIT, V43, P1115, DOI 10.1002/anie.200352400
[56]   Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles [J].
Seo, WS ;
Jo, HH ;
Lee, K ;
Park, JT .
ADVANCED MATERIALS, 2003, 15 (10) :795-+
[57]   Organic-capped ZnO nanocrystals: Synthesis and n-type character [J].
Shim, M ;
Guyot-Sionnest, P .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (47) :11651-11654
[58]   Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals [J].
Song, Q ;
Zhang, ZJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (19) :6164-6168
[59]   Fabrication parameters and NO2 sensitivity of reactively RF-sputtered In2O3 thin films [J].
Steffes, H ;
Imawan, C ;
Solzbacher, F ;
Obermeier, E .
SENSORS AND ACTUATORS B-CHEMICAL, 2000, 68 (1-3) :249-253
[60]   Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles [J].
Sun, SH ;
Zeng, H ;
Robinson, DB ;
Raoux, S ;
Rice, PM ;
Wang, SX ;
Li, GX .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :273-279