Crypto anchors

被引:20
作者
Balagurusamy, V. S. K. [1 ]
Cabral, C. [1 ]
Coomaraswamy, S. [1 ]
Delamarche, E. [2 ]
Dillenberger, D. N. [1 ]
Dittmann, G. [3 ]
Friedman, D. [1 ]
Gokce, O. [4 ]
Hinds, N. [1 ]
Jelitto, J. [5 ]
Kind, A. [5 ]
Kumar, A. D. [1 ]
Libsch, F. [1 ]
Ligman, J. W. [1 ]
Munetoh, S. [1 ]
Narayanaswami, C. [1 ]
Narendra, A. [1 ]
Paidimarri, A. [1 ]
Delgado, M. A. P. [6 ]
Rayfield, J. [1 ]
Subramanian, C. [1 ]
Vaculin, R. [1 ]
机构
[1] IBM Res, Yorktown Hts, NY 10598 USA
[2] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
[3] IBM Res, CH-8803 Ruschlikon, Switzerland
[4] IBM Res Ruschlikon, CH-8803 Zurich, Switzerland
[5] IBM Res, CH-8803 Zurich, Switzerland
[6] Univ Seville, Inst Microelectron Sevilla, Seville 41092, Spain
关键词
24;
D O I
10.1147/JRD.2019.2900651
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Blockchain technology can increase visibility in supply-chain transactions and lead to more accurate tracing of goods as well as provide evidence of whether a product is authentic or not. A shared, distributed ledger or blockchain alone, however, does not guarantee correct and trustworthy supply-chain traceability. We argue that blockchain technology (and any other digital traceability solution) must be enhanced with methods to "anchor" physical objects into information technology, Internet-of-Things and blockchain systems. Only when trust from the digital domain is extended to the physical domain can the movement of goods be accurately traced (e.g., for callbacks and provenance) and product authenticity determined. In this paper, we introduce the concept of crypto anchors, propose a classification and system architecture, and give implementation examples for different use cases and industries.
引用
收藏
页数:12
相关论文
共 21 条
[1]   A PUF- and Biometric-Based Lightweight Hardware Solution to Increase Security at Sensor Nodes [J].
Arjona, Rosario ;
Angel Prada-Delgado, Miguel ;
Arcenegui, Javier ;
Baturone, Iluminada .
SENSORS, 2018, 18 (08)
[2]   Improved Generation of Identifiers, Secret Keys, and Random Numbers From SRAMs [J].
Baturone, Iluminada ;
Prada-Delgado, Miguel A. ;
Eiroa, Susana .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2015, 10 (12) :2653-2668
[3]  
Bohm C., 2013, Physical Unclonable Functions in Theory and Practice
[4]   Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications [J].
Chen, L. ;
Lai, C. ;
Marchewka, R. ;
Berry, R. M. ;
Tam, K. C. .
NANOSCALE, 2016, 8 (27) :13288-13296
[5]  
Devadas E., P IEEE INT C RFID LA, P58
[6]   High-throughput fabrication of anticounterfeiting colloid-based photoluminescent microtags using electrical nanoimprint lithography [J].
Diaz, R. ;
Palleau, E. ;
Poirot, D. ;
Sangeetha, N. M. ;
Ressier, L. .
NANOTECHNOLOGY, 2014, 25 (34)
[7]  
Dillenberger D., 2017, IBM CRYPTO ANCHOR VE
[8]  
Gandhi K., 2009, MAGNEPRINT REAL TIME
[9]   High-Content Optical Codes for Protecting Rapid Diagnostic Tests from Counterfeiting [J].
Gokce, Onur ;
Mercandetti, Cristina ;
Delamarche, Emmanuel .
ANALYTICAL CHEMISTRY, 2018, 90 (12) :7383-7390
[10]  
Gutierrez C., 2017, CLOSE LOOK EVERLEDGE