The ubiquitin 26S proteasome proteolytic pathway

被引:1060
作者
Smalle, J [1 ]
Vierstra, RD [1 ]
机构
[1] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA
关键词
proteolysis; Arabidopsis; cell regulation; polypeptide tags;
D O I
10.1146/annurev.arplant.55.031903.141801
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Much of plant physiology, growth, and development is controlled by the selective removal of short-lived regulatory proteins. One important proteolytic pathway involves the small protein ubiquitin (Ub) and the 26S proteasome, a 2-MDa protease complex. In this pathway, Ub is attached to proteins destined for degradation; the resulting Ub-protein conjugates are then recognized and catabolized. by the 26S proteasome. This review describes our current understanding of the pathway in plants at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model. Collectively, these analyses show that the Ub/26S proteasome pathway is one of the most elaborate regulatory mechanisms in plants. The genome of Arabidopsis encodes more than 1400 (or >5% of the proteome) pathway components that can be connected to almost all aspects of its biology. Most pathway components participate in the Ub-ligation reactions that choose with exquisite specificity which proteins should be ubiquitinated. What remains to be determined is the identity of the targets, which may number in the thousands in plants.
引用
收藏
页码:555 / 590
页数:40
相关论文
共 189 条
[1]  
ALVAREZFERNANDE.J, 1994, PHYTOCHEMISTRY, V36, P1123
[2]   Regulatory role of SGT1 in early R gene-mediated plant defenses [J].
Austin, MJ ;
Muskett, P ;
Kahn, K ;
Feys, BJ ;
Jones, JDG ;
Parker, JE .
SCIENCE, 2002, 295 (5562) :2077-2080
[3]   The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance [J].
Azevedo, C ;
Sadanandom, A ;
Kitagawa, K ;
Freialdenhoven, A ;
Shirasu, K ;
Schulze-Lefert, P .
SCIENCE, 2002, 295 (5562) :2073-2076
[4]   The U-box protein family in plants [J].
Azevedo, C ;
Santos-Rosa, MJ ;
Shirasu, K .
TRENDS IN PLANT SCIENCE, 2001, 6 (08) :354-358
[5]   Orchestrating nuclear functions: ubiquitin sets the rhythm [J].
Bach, I ;
Ostendorff, HP .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (04) :189-195
[6]   Ubiquitylation in plants: a post-genomic look at a post-translational modification [J].
Bachmair, A ;
Novatchkova, M ;
Potuschak, T ;
Eisenhaber, F .
TRENDS IN PLANT SCIENCE, 2001, 6 (10) :463-470
[7]   USE OF A REPORTER TRANSGENE TO GENERATE ARABIDOPSIS MUTANTS IN UBIQUITIN-DEPENDENT PROTEIN-DEGRADATION [J].
BACHMAIR, A ;
BECKER, F ;
SCHELL, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (02) :418-421
[8]   UPL1 and 2, two 405 kDa ubiquitin-protein ligases from Arabidopsis thaliana related to the HECT-domain protein family [J].
Bates, PW ;
Vierstra, RD .
PLANT JOURNAL, 1999, 20 (02) :183-195
[9]   ALTERED RESPONSE TO VIRAL-INFECTION BY TOBACCO PLANTS PERTURBED IN UBIQUITIN SYSTEM [J].
BECKER, F ;
BUSCHFELD, E ;
SCHELL, J ;
BACHMAIR, A .
PLANT JOURNAL, 1993, 3 (06) :875-881
[10]   The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation [J].
Blilou, I ;
Frugier, F ;
Folmer, S ;
Serralbo, O ;
Willemsen, V ;
Wolkenfelt, H ;
Eloy, NB ;
Ferreira, PCG ;
Weisbeek, P ;
Scheres, B .
GENES & DEVELOPMENT, 2002, 16 (19) :2566-2575