Differential occurrence of reluctant openings in G-protein-inhibited N- and P/Q-type calcium channels

被引:52
作者
Colecraft, HM
Patil, PG
Yue, DT
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Program Mol & Cellular Syst Physiol, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Neurosci, Baltimore, MD 21205 USA
关键词
alpha(1A); alpha(1B); channel modulation; heterologous expression; short-term synaptic plasticity;
D O I
10.1085/jgp.115.2.175
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Voltage-dependent inhibition of N- and P/Q-type calcium channels by G proteins is crucial for presynaptic inhibition of neurotransmitter release, and may contribute importantly to short-term synaptic plasticity. Such calcium-channel modulation could thereby impact significantly the neuro-computational repertoire of neural networks. The differential modulation of N and P/Q channels could even further enrich their impact upon synaptic tuning. Here, we performed in-depth comparison of the G-protein inhibition of recombinant N and P/Q channels, expressed in HEI( 293 cells with the m2 muscarinic receptor. While both channel types display classic features of G-protein modulation (kinetic slowing of activation, prepulse facilitation, and voltage dependence of inhibition), we confirmed previously reported quantitative differences, with N channels displaying stronger inhibition and greater relief of inhibition by prepulses. A more fundamental, qualitative difference in the modulation of these two channels was revealed by a modified tail-activation paradigm, as well as by a novel "slope" analysis method comparing time courses of slow activation and prepulse facilitation. The stark contrast in modulatory behavior can be understood within the context of the "willing-reluctant" model, in which binding of G-protein beta gamma subunits to channels induces a reluctant mode of gating, where stronger depolarization is required for opening. Our experiments suggest that only N channels could be opened in the reluctant mode, at voltages normally spanned by neuronal action potentials. By contrast, P/Q channels appear to remain closed, especially over these physiological voltages. Further; the differential occurrence of reluctant openings is not explained by differences in the rate of G-protein unbinding from the two channels. These two scenarios predict very different effects of G-pro rein inhibition on the waveform of Ca2+ entry during action potentials, with potentially important consequences for the timing and efficacy of synaptic transmission.
引用
收藏
页码:175 / 192
页数:18
相关论文
共 68 条
[1]   THE CALCIUM SIGNAL FOR TRANSMITTER SECRETION FROM PRESYNAPTIC NERVE-TERMINALS [J].
AUGUSTINE, GJ ;
ADLER, EM ;
CHARLTON, MP .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES-SERIES, 1991, 635 :365-381
[2]   INHIBITION OF N-TYPE AND P-TYPE CALCIUM CURRENTS AND THE AFTER HYPERPOLARIZATION IN RAT MOTONEURONS BY SEROTONIN [J].
BAYLISS, DA ;
UMEMIYA, M ;
BERGER, AJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 485 (03) :635-647
[4]   Single-domain/bound calcium hypothesis of transmitter release and facilitation [J].
Bertram, R ;
Sherman, A ;
Stanley, EF .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 75 (05) :1919-1931
[5]   Ca2+-dependent regulation in neuronal gene expression [J].
Bito, H ;
Deisseroth, K ;
Tsien, RW .
CURRENT OPINION IN NEUROBIOLOGY, 1997, 7 (03) :419-429
[6]  
BOLAND LM, 1993, J NEUROSCI, V13, P516
[7]   Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat [J].
Borst, JGG ;
Helmchen, F ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 489 (03) :825-840
[8]   Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem [J].
Borst, JGG ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 506 (01) :143-157
[9]   Determinants of the G protein-dependent opioid modulation of neuronal calcium channels [J].
Bourinet, E ;
Soong, TW ;
Stea, A ;
Snutch, TP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (04) :1486-1491
[10]   Splicing of α1A subunit gene generates phenotypic variants of P- and Q-type calcium channels [J].
Bourinet, E ;
Soong, TW ;
Sutton, K ;
Slaymaker, S ;
Mathews, E ;
Monteil, A ;
Zamponi, GW ;
Nargeot, J ;
Snutch, TP .
NATURE NEUROSCIENCE, 1999, 2 (05) :407-415