Caveolin-1 regulates sheer stress-dependent activation of extracellular signal-regulated kinase

被引:109
作者
Park, H
Go, YM
Darji, R
Choi, JW
Lisanti, MP
Maland, MC
Jo, H
机构
[1] Univ Alabama, Dept Pathol, Birmingham, AL 35294 USA
[2] Yeshiva Univ Albert Einstein Coll Med, Dept Mol Pharmacol, Bronx, NY 10461 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY | 2000年 / 278卷 / 04期
关键词
blood flow; vascular biology; atherosclerosis;
D O I
10.1152/ajpheart.2000.278.4.H1285
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells, pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH2-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.
引用
收藏
页码:H1285 / H1293
页数:9
相关论文
共 46 条
[1]   The caveolae membrane system [J].
Anderson, RGW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :199-225
[2]   MEKK-1, a component of the stress (stress-activated protein kinase c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells [J].
Brown, JD ;
DiChiara, MR ;
Anderson, KR ;
Gimbrone, MA ;
Topper, JN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (13) :8797-8805
[3]   Regulation of G protein-coupled receptor kinases by caveolin [J].
Carman, CV ;
Lisanti, MP ;
Benovic, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (13) :8858-8864
[4]   Effects of mechanical forces on signal transduction and gene expression in endothelial cells [J].
Chien, S ;
Li, S ;
Shyy, JYJ .
HYPERTENSION, 1998, 31 (01) :162-169
[5]   HOW MAP KINASES ARE REGULATED [J].
COBB, MH ;
GOLDSMITH, EJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (25) :14843-14846
[6]   Identification of peptide and protein ligands for the caveolin-scaffolding domain - Implications for the interaction of caveolin with caveolae-associated proteins [J].
Couet, J ;
Li, SW ;
Okamoto, T ;
Ikezu, T ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (10) :6525-6533
[7]   FLOW-MEDIATED ENDOTHELIAL MECHANOTRANSDUCTION [J].
DAVIES, PF .
PHYSIOLOGICAL REVIEWS, 1995, 75 (03) :519-560
[8]   Molecular genetics of the caveolin gene family:: Implications for human cancers, diabetes, Alzheimer disease, and muscular dystrophy [J].
Engelman, JA ;
Zhang, XL ;
Galbiati, F ;
Volonté, D ;
Sotgia, F ;
Pestell, RG ;
Minetti, C ;
Scherer, PE ;
Okamoto, T ;
Lisanti, MP .
AMERICAN JOURNAL OF HUMAN GENETICS, 1998, 63 (06) :1578-1587
[9]  
Gimbrone MA, 1997, J CLIN INVEST, V100, pS61
[10]   Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH2-terminal kinase [J].
Go, YM ;
Patel, RP ;
Maland, MC ;
Park, H ;
Beckman, JS ;
Darley-Usmar, VM ;
Jo, H .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1999, 277 (04) :H1647-H1653