Acidosis enhances translocation of protein kinase C but not Ca2+/calmodulin-dependent protein kinase II to cell membranes during complete cerebral ischemia

被引:21
作者
Katsura, K
Kurihara, J
Siesjö, BK
Wieloch, T [1 ]
机构
[1] Nippon Med Coll, Dept Internal Med 2, Tokyo 1138603, Japan
[2] Teikyo Univ, Fac Pharmaceut Sci, Dept Pharmacol, Kanagawa 1990195, Japan
[3] Queens Med Ctr, Ctr Study Neurol Dis, Honolulu, HI USA
[4] Univ Lund Hosp, Wallenberg Neurosci Ctr, Expt Brain Res Lab, S-22185 Lund, Sweden
关键词
ischemia; hyperglycemia; hypercapnia; acidosis; rat; protein kinase C; Ca2+/calmodulin kinase II;
D O I
10.1016/S0006-8993(99)02072-7
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Systemic hyperglycemia and hypercapnia severely aggravate ischemic brain damage when instituted prior to cerebral ischemia. An aberrant cell signaling following ischemia has been proposed to be involved in ischemic cell death, affecting protein kinase C (PKC) and the calcium calmodulin kinase II (CaMKII). Using a cardiac arrest model of global brain ischemia of 10 min duration, we investigated the effect of hyperglycemia (20 mM) and hypercapnia (pCO(2) 300 mmHg) on the subcellular redistribution of PKC (alpha, beta, gamma) and CaMKII to synaptic membranes and to the microsomes, as well as the effect on PKC activity. We confirmed the marked translocation of PKC and CaMKII to cell membranes induced by ischemia, concomitantly with a decrease in the PKC activity in both the membrane fraction and cytosol. Hyperglycemia and hypercapnia markedly enhanced the translocation of PKC-gamma to cell membranes while other PKC isoforms were less affected. There was no effect of acidosis on PKC activity, or on translocation of CaMKII to cell membranes. Our data strongly suggest that the enhanced translocation of PKC to cell membranes induced by hyperglycemia and hypercapnia may contribute to the detrimental effect of tissue acidosis on the outcome following ischemia. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 52 条
[1]  
Bazan N G, 1976, Adv Exp Med Biol, V72, P317
[2]   SULFITE STIMULATES NADPH OXIDASE OF HUMAN NEUTROPHILS TO PRODUCE ACTIVE OXYGEN RADICALS VIA PROTEIN-KINASE-C AND CA2+/CALMODULIN PATHWAYS [J].
BECKSPEIER, I ;
LIESE, JG ;
BELOHRADSKY, BH ;
GODLESKI, JJ .
FREE RADICAL BIOLOGY AND MEDICINE, 1993, 14 (06) :661-668
[3]   The effect of hypothermia on the expression of neurotrophin mRNA in the hippocampus following transient cerebral ischemia in the rat [J].
Boris-Möller, F ;
Kamme, F ;
Wieloch, T .
MOLECULAR BRAIN RESEARCH, 1998, 63 (01) :163-173
[4]   PH-DEPENDENT NONLYSOSOMAL PROTEOLYSIS CONTRIBUTES TO LETHAL ANOXIC INJURY OF RAT HEPATOCYTES [J].
BRONK, SF ;
GORES, GJ .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 264 (04) :G744-G751
[5]  
BUSTO R, 1994, J NEUROCHEM, V63, P1095
[6]   HYPOTHERMIA PREVENTS THE ISCHEMIA-INDUCED TRANSLOCATION AND INHIBITION OF PROTEIN-KINASE-C IN THE RAT STRIATUM [J].
CARDELL, M ;
BORISMOLLER, F ;
WIELOCH, T .
JOURNAL OF NEUROCHEMISTRY, 1991, 57 (05) :1814-1817
[7]   PROTEIN-KINASE-C IS TRANSLOCATED TO CELL-MEMBRANES DURING CEREBRAL-ISCHEMIA [J].
CARDELL, M ;
BINGREN, H ;
WIELOCH, T ;
ZIVIN, J ;
SAITOH, T .
NEUROSCIENCE LETTERS, 1990, 119 (02) :228-232
[8]   TIME-COURSE OF THE TRANSLOCATION AND INHIBITION OF PROTEIN-KINASE-C DURING COMPLETE CEREBRAL-ISCHEMIA IN THE RAT [J].
CARDELL, M ;
WIELOCH, T .
JOURNAL OF NEUROCHEMISTRY, 1993, 61 (04) :1308-1314
[9]   Comparison of the changes in protein kinase C induced by glutamate in primary cortical neurons and by in vivo cerebral ischaemia [J].
Chakravarthy, BR ;
Wang, J ;
Tremblay, R ;
Atkinson, TG ;
Wang, FH ;
Li, H ;
Buchan, AM ;
Durkin, JP .
CELLULAR SIGNALLING, 1998, 10 (04) :291-295
[10]  
DELZOPPO GJ, 1994, CEREBROVAS BRAIN MET, V6, P47