Plant stomata function in innate immunity against bacterial invasion

被引:1460
作者
Melotto, Maeli
Underwood, William
Koczan, Jessica
Nomura, Kinya
He, Sheng Yang [1 ]
机构
[1] Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Grad Program Genet, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.cell.2006.06.054
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microbial entry into host tissue is a critical first step in causing infection in animals and plants. In plants, it has been assumed that microscopic surface openings, such as stomata, serve as passive ports of bacterial entry during infection. Surprisingly, we found that stomatal closure is part of a plant innate immune response to restrict bacterial invasion. Stomatal guard cells of Arabidopsis perceive bacterial surface molecules, which requires the FLS2 receptor, production of nitric oxide, and the guard-cell-specific OST1 kinase. To circumvent this innate immune response, plant pathogenic bacteria have evolved specific virulence factors to effectively cause stomatal reopening as an important pathogenesis strategy. We provide evidence that supports a model in which stomata, as part of an integral innate immune system, act as a barrier against bacterial infection.
引用
收藏
页码:969 / 980
页数:12
相关论文
共 54 条
[1]   Strategies used by bacterial pathogens to suppress plant defenses [J].
Abramovitch, RB ;
Martin, GB .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (04) :356-364
[2]   Type III secretion system effector proteins: Double agents in bacterial disease and plant defense [J].
Alfano, JR ;
Collmer, A .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :385-414
[3]   Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis [J].
Anderson, JP ;
Badruzsaufari, E ;
Schenk, PM ;
Manners, JM ;
Desmond, OJ ;
Ehlert, C ;
Maclean, DJ ;
Ebert, PR ;
Kazan, K .
PLANT CELL, 2004, 16 (12) :3460-3479
[4]  
[Anonymous], 2002, ARABIDOPSIS BOOK
[5]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[6]   Are innate immune signaling pathways in plants and animals conserved? [J].
Ausubel, FM .
NATURE IMMUNOLOGY, 2005, 6 (10) :973-979
[7]   Pseudomonas syringae phytotoxins:: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases [J].
Bender, CL ;
Alarcón-Chaidez, F ;
Gross, DC .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1999, 63 (02) :266-+
[8]   Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables [J].
Beuchat, LR .
MICROBES AND INFECTION, 2002, 4 (04) :413-423
[9]   K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction [J].
Blatt, MR ;
Grabov, A ;
Brearley, J ;
Hammond-Kosack, K ;
Jones, JDG .
PLANT JOURNAL, 1999, 19 (04) :453-462
[10]   The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana [J].
Brooks, DM ;
Bender, CL ;
Kunkel, BN .
MOLECULAR PLANT PATHOLOGY, 2005, 6 (06) :629-639