The Evi-1 proto-oncogene encodes a transcriptional repressor activity associated with transformation

被引:66
作者
Bartholomew, C
Kilbey, A
Clark, AM
Walker, M
机构
[1] Cancer Res. Campaign Beatson Labs., Beatson Inst. for Cancer Research, Glasgow G61 1BD, Garscube Estate, Switchback Road
关键词
Evi-1; repression; leukaemogenesis; development;
D O I
10.1038/sj.onc.1200864
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The myeloid transforming gene Evi-1 encodes a protein with two zinc finger domains, designated ZF1 and ZF2, with distinct DNA binding specificities. For the first time we demonstrate that Evi-1 has transcriptional repressor activity which is directly proportional to the amount of Evi-1 protein in cells. Repression has been observed with two distinct promoters: the minimal HSV-1 tk promoter and a VP16 inducible adenovirus E1b minimal promoter. Optimal repression is DNA binding dependent and is mediated by either ZF1 or a heterologous GAL4 DNA binding domain (GAL4DBD) but is significantly less efficient through the ZF2 binding site. Both GAL4DBD/Evi-1 fusion and non-fusion proteins have been used to map the repressor activity to a proline-rich region located within amino acids 514-724 between the ZF1 and ZF2 domains. Constitutive expression of mutant proteins lacking the repressor domain are defective for transformation of Rat1 fibroblasts demonstrating that this region is required for the oncogenic activity of the Evi-1 protein. These studies show that the Evi-1 gene encodes a transcriptional repressor and has important implications for the mechanism of action of the Evi-1 protein both in development and in the progression of some myeloid leukaemias.
引用
收藏
页码:569 / 577
页数:9
相关论文
共 46 条
[1]   A TRANSFERABLE SILENCING DOMAIN IS PRESENT IN THE THYROID-HORMONE RECEPTOR, IN THE V-ERBA ONCOGENE PRODUCT AND IN THE RETINOIC ACID RECEPTOR [J].
BANIAHMAD, A ;
KOHNE, AC ;
RENKAWITZ, R .
EMBO JOURNAL, 1992, 11 (03) :1015-1023
[2]   RETROVIRAL INSERTIONS 90 KILOBASES PROXIMAL TO THE EVI-1 MYELOID TRANSFORMING GENE ACTIVATE TRANSCRIPTION FROM THE NORMAL PROMOTER [J].
BARTHOLOMEW, C ;
IHLE, JN .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (04) :1820-1828
[3]  
BARTHOLOMEW C, 1989, ONCOGENE, V4, P529
[4]   BCL-X, A BCL-2-RELATED GENE THAT FUNCTIONS AS A DOMINANT REGULATOR OF APOPTOTIC CELL-DEATH [J].
BOISE, LH ;
GONZALEZGARCIA, M ;
POSTEMA, CE ;
DING, LY ;
LINDSTEN, T ;
TURKA, LA ;
MAO, XH ;
NUNEZ, G ;
THOMPSON, CB .
CELL, 1993, 74 (04) :597-608
[5]  
BORDEREAUX D, 1990, ONCOGENE, V5, P925
[6]   REPORTER CONSTRUCTS WITH LOW BACKGROUND ACTIVITY UTILIZING THE CAT GENE [J].
BOSHART, M ;
KLUPPEL, M ;
SCHMIDT, A ;
SCHUTZ, G ;
LUCKOW, B .
GENE, 1992, 110 (01) :129-130
[7]   TRANSCRIPTIONAL REPRESSION BY DROSOPHILA AND MAMMALIAN POLYCOMB GROUP PROTEINS IN TRANSFECTED MAMMALIAN-CELLS [J].
BUNKER, CA ;
KINGSTON, RE .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (03) :1721-1732
[8]   REPRESSION VERSUS ACTIVATION IN THE CONTROL OF GENE-TRANSCRIPTION [J].
COWELL, IG .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (01) :38-42
[9]   4 OF THE 7 ZINC FINGERS OF THE EVI-1 MYELOID-TRANSFORMING GENE ARE REQUIRED FOR SEQUENCE-SPECIFIC BINDING TO GA(C/T)AAGA(T/C)AAGATAA [J].
DELWEL, R ;
FUNABIKI, T ;
KREIDER, BL ;
MORISHITA, K ;
IHLE, JN .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (07) :4291-4300
[10]  
DREYFUS F, 1995, LEUKEMIA, V9, P203