The use of single-cell RNA-Seq to understand virus-host interactions

被引:39
作者
Cristinelli, Sara
Ciuffi, Angela [1 ]
机构
[1] Lausanne Univ Hosp, Inst Microbiol, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
TRANSCRIPTOME ANALYSIS; HIGHLY PARALLEL; HETEROGENEITY; EXPRESSION; ERRORS;
D O I
10.1016/j.coviro.2018.03.001
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Single-cell analyses allow uncovering cellular heterogeneity, not only per se, but also in response to viral infection. Similarly, single cell transcriptome analyses (scRNA-Seq) can highlight specific signatures, identifying cell subsets with particular phenotypes, which are relevant in the understanding of virus host interactions.
引用
收藏
页码:39 / 50
页数:12
相关论文
共 71 条
[1]   Cellular Heterogeneity: Do Differences Make a Difference? [J].
Altschuler, Steven J. ;
Wu, Lani F. .
CELL, 2010, 141 (04) :559-563
[2]  
[Anonymous], BIOINFORMATICS
[3]  
[Anonymous], WILEY INTERDISCIP RE
[4]  
[Anonymous], J VIRUS ERADIC S5
[5]  
[Anonymous], NATURE
[6]  
[Anonymous], BRIEF FUNCT GENOM
[7]  
[Anonymous], NUCL ACIDS RES
[8]  
[Anonymous], 2016 C RETR OPP INF
[9]   DE-kupl: exhaustive capture of biological variation in RNA-seq data through k-mer decomposition [J].
Audoux, Jerome ;
Philippe, Nicolas ;
Chikhi, Rayan ;
Salson, Mikael ;
Gallopin, Melina ;
Gabriel, Marc ;
Le Coz, Jeremy ;
Drouineau, Emilie ;
Commes, Therese ;
Gautheret, Daniel .
GENOME BIOLOGY, 2017, 18
[10]   Design and computational analysis of single-cell RNA-sequencing experiments [J].
Bacher, Rhonda ;
Kendziorski, Christina .
GENOME BIOLOGY, 2016, 17