Visualization and unsupervised classification of changes in multispectral satellite imagery

被引:43
作者
Canty, Morton J. [1 ]
Nielsen, Allan A.
机构
[1] Forschungszentrum Julich, D-52425 Julich, Germany
[2] Tech Univ Denmark, DK-2800 Lyngby, Denmark
关键词
15;
D O I
10.1080/01431160500222608
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The statistical techniques of multivariate alteration detection, minimum/maximum autocorrelation factors transformation, expectation maximization and probabilistic label relaxation are combined in a unified scheme to visualize and to classify changes in multispectral satellite data. The methods are demonstrated with an example involving bitemporal LANDSAT TM imagery.
引用
收藏
页码:3961 / 3975
页数:15
相关论文
共 15 条
[1]  
Anderson TW., 2003, INTRO MULTIVARIATE S
[2]  
Bishop C. M., 1996, Neural networks for pattern recognition
[3]   Automatic analysis of the difference image for unsupervised change detection [J].
Bruzzone, L ;
Prieto, DF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03) :1171-1182
[4]  
BRUZZONE L, 2002, DIT020030 U TRENT DE
[5]   Automatic radiometric normalization of multitemporal satellite imagery [J].
Canty, MJ ;
Nielsen, AA ;
Schmidt, M .
REMOTE SENSING OF ENVIRONMENT, 2004, 91 (3-4) :441-451
[6]   Unsupervised classification of satellite imagery: choosing a good algorithm [J].
Duda, T ;
Canty, M .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (11) :2193-2212
[7]  
Dunn J.C., 1973, J CYBERNETICS, V3, P32, DOI DOI 10.1080/01969727308546046
[8]   UNSUPERVISED OPTIMAL FUZZY CLUSTERING [J].
GATH, I ;
GEVA, AB .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :773-781
[9]   A TRANSFORMATION FOR ORDERING MULTISPECTRAL DATA IN TERMS OF IMAGE QUALITY WITH IMPLICATIONS FOR NOISE REMOVAL [J].
GREEN, AA ;
BERMAN, M ;
SWITZER, P ;
CRAIG, MD .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1988, 26 (01) :65-74
[10]  
HILGER KB, 2001, THESIS TU DENMARK