Unsupervised classification of satellite imagery: choosing a good algorithm

被引:83
作者
Duda, T [1 ]
Canty, M [1 ]
机构
[1] Forschungszentrum Julich, D-52425 Julich, Germany
关键词
D O I
10.1080/01431160110078467
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In the context of land-cover classification with multispectral satellite data several unsupervised classification (clustering) algorithms are investigated and compared with regard to their ability to reproduce ground data in a complex landscape. Ground data is extended to the entire scene using a supervised neural network classification algorithm. The clustering algorithms examined are K-means, extended K-means, agglomerative hierarchical, fuzzy K-means and fuzzy maximum likelihood. Fuzzy clustering is found to perform best relative to a reference scene obtained with the Landsat Thematic Mapper 5 (TM5) platform.
引用
收藏
页码:2193 / 2212
页数:20
相关论文
共 11 条
[1]  
[Anonymous], FERNERKUNDUNG NEURON
[2]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[3]  
CHUVIECO E, 1988, PHOTOGRAMM ENG REM S, V54, P1275
[4]   A COEFFICIENT OF AGREEMENT FOR NOMINAL SCALES [J].
COHEN, J .
EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1960, 20 (01) :37-46
[5]  
Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
[6]  
Fraley C, 1996, 311 U WASH DEP STAT
[7]   UNSUPERVISED OPTIMAL FUZZY CLUSTERING [J].
GATH, I ;
GEVA, AB .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :773-781
[8]  
Hart P.E., 1973, Pattern recognition and scene analysis
[9]   K-means clustering algorithm using the entropy [J].
Palubinskas, G .
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IV, 1998, 3500 :63-71
[10]  
Richards J. A., 1995, REMOTE SENSING DIGIT