Advanced prerequisite for E-infinity theory

被引:33
作者
El Naschie, M. Saladin [1 ]
机构
[1] Univ Alexandria, Dept Phys, Alexandria, Egypt
关键词
D O I
10.1016/j.chaos.2006.04.044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the third of a series of papers written with the primary aim of communicating necessary theoretical background knowledge required for an in-depth study of E-infinity theory. Compared to the previous two papers [El Naschie MS. Elementary prerequisites for E-infinity (Recommended background readings in nonlinear dynamics, geometry and topology). Chaos, Solitons & Fractals 2006;30(3):579-605; El Naschic MS. Intermediate prerequisites for E-infinity theory. Chaos, Solitons & Fractals 2006;30(3):622-8], the present one may be described as advanced. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:636 / 641
页数:6
相关论文
共 12 条
[1]   Holographic dimensional reduction:: Center manifold theorem and E-infinity [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2006, 29 (04) :816-822
[2]   Elementary prerequisites for E-infinity (Recommended background readings in nonlinear dynamics, geometry and topology [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :579-605
[3]   Intermediate prerequisites for E-infinity theory (Further recommended reading in nonlinear dynamics and mathematical physics) [J].
El Naschie, M. Saladin .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :622-628
[4]   On a class of fuzzy Kahler-like manifolds [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2005, 26 (02) :257-261
[5]   A review of E infinity theory and the mass spectrum of high energy particle physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :209-236
[6]   On a class of general theories for high energy particle physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2002, 14 (04) :649-668
[7]  
Freedman M., 1990, PRINCETON MATH SERIE
[8]  
KHRENNIKOV A, 1997, NONARHIMEDEAN ANAL
[9]  
KODIYALAM V, 2001, TOPOLOGICAL QUANTUM
[10]   THE IMBEDDING PROBLEM FOR RIEMANNIAN MANIFOLDS [J].
NASH, J .
ANNALS OF MATHEMATICS, 1956, 63 (01) :20-63