Performance comparison of four exome capture systems for deep sequencing

被引:116
作者
Chilamakuri, Chandra Sekhar Reddy [1 ,3 ]
Lorenz, Susanne [1 ,3 ,4 ]
Madoui, Mohammed-Amin [1 ,4 ]
Vodak, Daniel [1 ,5 ]
Sun, Jinchang [1 ,3 ,4 ]
Hovig, Eivind [1 ,2 ,3 ,5 ]
Myklebost, Ola [1 ,3 ]
Meza-Zepeda, Leonardo A. [1 ,3 ,4 ]
机构
[1] Norwegian Radium Hosp, Oslo Univ Hosp, Dept Tumor Biol, N-0310 Oslo, Norway
[2] Norwegian Radium Hosp, Oslo Univ Hosp, Dept Med Informat, N-0310 Oslo, Norway
[3] Norwegian Canc Genom Consortium, Oslo, Norway
[4] Oslo Univ Hosp, Genom Core Facil, Oslo, Norway
[5] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
来源
BMC GENOMICS | 2014年 / 15卷
关键词
Exome capture technology; Next-generation sequencing; Coverage efficiency; Enrichment efficiency; GC bias; Single nucleotide variant; Indel; DNA; GENERATION; POPULATION; LIBRARIES; SELECTION; GENOMES;
D O I
10.1186/1471-2164-15-449
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Recent developments in deep (next-generation) sequencing technologies are significantly impacting medical research. The global analysis of protein coding regions in genomes of interest by whole exome sequencing is a widely used application. Many technologies for exome capture are commercially available; here we compare the performance of four of them: NimbleGen's SeqCap EZ v3.0, Agilent's SureSelect v4.0, Illumina's TruSeq Exome, and Illumina's Nextera Exome, all applied to the same human tumor DNA sample. Results: Each capture technology was evaluated for its coverage of different exome databases, target coverage efficiency, GC bias, sensitivity in single nucleotide variant detection, sensitivity in small indel detection, and technical reproducibility. In general, all technologies performed well; however, our data demonstrated small, but consistent differences between the four capture technologies. Illumina technologies cover more bases in coding and untranslated regions. Furthermore, whereas most of the technologies provide reduced coverage in regions with low or high GC content, the Nextera technology tends to bias towards target regions with high GC content. Conclusions: We show key differences in performance between the four technologies. Our data should help researchers who are planning exome sequencing to select appropriate exome capture technology for their particular application.
引用
收藏
页数:13
相关论文
共 23 条
[1]   Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries [J].
Aird, Daniel ;
Ross, Michael G. ;
Chen, Wei-Sheng ;
Danielsson, Maxwell ;
Fennell, Timothy ;
Russ, Carsten ;
Jaffe, David B. ;
Nusbaum, Chad ;
Gnirke, Andreas .
GENOME BIOLOGY, 2011, 12 (02)
[2]   Direct selection of human genomic loci by microarray hybridization [J].
Albert, Thomas J. ;
Molla, Michael N. ;
Muzny, Donna M. ;
Nazareth, Lynne ;
Wheeler, David ;
Song, Xingzhi ;
Richmond, Todd A. ;
Middle, Chris M. ;
Rodesch, Matthew J. ;
Packard, Charles J. ;
Weinstock, George M. ;
Gibbs, Richard A. .
NATURE METHODS, 2007, 4 (11) :903-905
[3]   Comprehensive comparison of three commercial human whole-exome capture platforms [J].
Asan ;
Xu, Yu ;
Jiang, Hui ;
Tyler-Smith, Chris ;
Xue, Yali ;
Jiang, Tao ;
Wang, Jiawei ;
Wu, Mingzhi ;
Liu, Xiao ;
Tian, Geng ;
Wang, Jun ;
Wang, Jian ;
Yang, Huangming ;
Zhang, Xiuqing .
GENOME BIOLOGY, 2011, 12 (09) :R95
[4]   Whole exome capture in solution with 3 Gbp of data [J].
Bainbridge, Matthew N. ;
Wang, Min ;
Burgess, Daniel L. ;
Kovar, Christie ;
Rodesch, Matthew J. ;
D'Ascenzo, Mark ;
Kitzman, Jacob ;
Wu, Yuan-Qing ;
Newsham, Irene ;
Richmond, Todd A. ;
Jeddeloh, Jeffrey A. ;
Muzny, Donna ;
Albert, Thomas J. ;
Gibbs, Richard A. .
GENOME BIOLOGY, 2010, 11 (06)
[5]   Performance comparison of exome DNA sequencing technologies [J].
Clark, Michael J. ;
Chen, Rui ;
Lam, Hugo Y. K. ;
Karczewski, Konrad J. ;
Chen, Rong ;
Euskirchen, Ghia ;
Butte, Atul J. ;
Snyder, Michael .
NATURE BIOTECHNOLOGY, 2011, 29 (10) :908-U206
[6]   Genomewide comparison of DNA sequences between humans and chimpanzees [J].
Ebersberger, I ;
Metzler, D ;
Schwarz, C ;
Pääbo, S .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 70 (06) :1490-1497
[7]   Ensembl 2012 [J].
Flicek, Paul ;
Amode, M. Ridwan ;
Barrell, Daniel ;
Beal, Kathryn ;
Brent, Simon ;
Carvalho-Silva, Denise ;
Clapham, Peter ;
Coates, Guy ;
Fairley, Susan ;
Fitzgerald, Stephen ;
Gil, Laurent ;
Gordon, Leo ;
Hendrix, Maurice ;
Hourlier, Thibaut ;
Johnson, Nathan ;
Kaehaeri, Andreas K. ;
Keefe, Damian ;
Keenan, Stephen ;
Kinsella, Rhoda ;
Komorowska, Monika ;
Koscielny, Gautier ;
Kulesha, Eugene ;
Larsson, Pontus ;
Longden, Ian ;
McLaren, William ;
Muffato, Matthieu ;
Overduin, Bert ;
Pignatelli, Miguel ;
Pritchard, Bethan ;
Riat, Harpreet Singh ;
Ritchie, Graham R. S. ;
Ruffier, Magali ;
Schuster, Michael ;
Sobral, Daniel ;
Tang, Y. Amy ;
Taylor, Kieron ;
Trevanion, Stephen ;
Vandrovcova, Jana ;
White, Simon ;
Wilson, Mark ;
Wilder, Steven P. ;
Aken, Bronwen L. ;
Birney, Ewan ;
Cunningham, Fiona ;
Dunham, Ian ;
Durbin, Richard ;
Fernandez-Suarez, Xose M. ;
Harrow, Jennifer ;
Herrero, Javier ;
Hubbard, Tim J. P. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D84-D90
[8]   Single nucleotide variation analysis in 65 candidate genes for CNS disorders in a representative sample of the European population [J].
Freudenberg-Hua, Y ;
Freudenberg, J ;
Kluck, N ;
Cichon, S ;
Propping, P ;
Nöthen, MM .
GENOME RESEARCH, 2003, 13 (10) :2271-2276
[9]   Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing [J].
Gnirke, Andreas ;
Melnikov, Alexandre ;
Maguire, Jared ;
Rogov, Peter ;
LeProust, Emily M. ;
Brockman, William ;
Fennell, Timothy ;
Giannoukos, Georgia ;
Fisher, Sheila ;
Russ, Carsten ;
Gabriel, Stacey ;
Jaffe, David B. ;
Lander, Eric S. ;
Nusbaum, Chad .
NATURE BIOTECHNOLOGY, 2009, 27 (02) :182-189
[10]   Insertion site preference of Mu, Tn5, and Tn7 transposons [J].
Green, Brian ;
Bouchier, Christiane ;
Fairhead, Cecile ;
Craig, Nancy L. ;
Cormack, Brendan P. .
MOBILE DNA, 2012, 3