Parallel implementation of successive convex relaxation methods for quadratic optimization problems

被引:5
作者
Takeda, A [1 ]
Fujisawa, K
Fukaya, Y
Kojima, M
机构
[1] Toshiba Co Ltd, Kawasaki, Kanagawa 210, Japan
[2] Kyoto Univ, Dept Architecture, Kyoto, Japan
[3] NS Solut Corp, Tokyo, Japan
[4] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 152, Japan
关键词
nonconvex quadratic program; SDP relaxation; lift-and-project LP relaxation; lift-and-project procedure; parallel computation; global computing;
D O I
10.1023/A:1020299805773
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
As computing resources continue to improve, global solutions for larger size quadrically constrained optimization problems become more achievable. In this paper, we focus on larger size problems and get accurate bounds for optimal values of such problems with the successive use of SDP relaxations on a parallel computing system called Ninf (Network-based Information Library for high performance computing).
引用
收藏
页码:237 / 260
页数:24
相关论文
共 28 条
[1]   A branch and cut algorithm for nonconvex quadratically constrained quadratic programming [J].
Audet, C ;
Hansen, P ;
Jaumard, B ;
Savard, G .
MATHEMATICAL PROGRAMMING, 2000, 87 (01) :131-152
[2]   A LIFT-AND-PROJECT CUTTING PLANE ALGORITHM FOR MIXED 0-1 PROGRAMS [J].
BALAS, E ;
CERIA, S ;
CORNUEJOLS, G .
MATHEMATICAL PROGRAMMING, 1993, 58 (03) :295-324
[3]   A NEW TECHNIQUE FOR GENERATING QUADRATIC-PROGRAMMING TEST PROBLEMS [J].
CALAMAI, PH ;
VICENTE, LN ;
JUDICE, JJ .
MATHEMATICAL PROGRAMMING, 1993, 61 (02) :215-231
[4]   Generating quadratic bilevel programming test problem [J].
Calamai, Paul H. ;
Vicente, Luis N. .
ACM Transactions on Mathematical Software, 1994, 20 (01) :103-119
[5]   Semidefinite programming relaxation for nonconvex quadratic programs [J].
Fujie, T ;
Kojima, M .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 10 (04) :367-380
[6]   Exploiting sparsity in primal-dual interior-point methods for semidefinite programming [J].
Fujisawa, K ;
Kojima, M ;
Nakata, K .
MATHEMATICAL PROGRAMMING, 1997, 79 (1-3) :235-253
[7]  
FUJISAWA K, 1999, B308 TOK I TECHN
[8]  
HORST R, 1992, GLOBAL OPTIMIZATION
[9]   Discretization and localization in successive convex relaxation methods for nonconvex quadratic optimization [J].
Kojima, M ;
Tunçel, L .
MATHEMATICAL PROGRAMMING, 2000, 89 (01) :79-111
[10]   Cones of matrices and successive convex relaxations of nonconvex sets [J].
Kojima, M ;
Tuncel, L .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) :750-778