Failure of the Ott-Grebogi-York-type controllers for nonhyperbolic chaos

被引:6
作者
Huang, DB [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200136, Peoples R China
关键词
D O I
10.1088/0256-307X/19/6/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is considered that nonhyperbolicity affects the achievement of Ott-Grebogi-York-type (OGY-type) controllers. The result shows that, without a priori analytical knowledge of the dynamics, it is impossible to estimate the local dynamics from an experimental time series due to the singularity of the corresponding least-squares problem which results from the nonhyperbolicity in the system. Thus, it is necessary to destroy chaos before obtaining the formation for attempting control by experimental time series. The result explains a physical experimental result in the failure of chaos control in a parametrically excited pendulum model.
引用
收藏
页码:762 / 764
页数:3
相关论文
共 9 条
[1]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[2]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[3]   PROBLEMS IN ESTIMATING DYNAMICS FROM DATA [J].
KOSTELICH, EJ .
PHYSICA D, 1992, 58 (1-4) :138-152
[4]   CHARACTERIZATION OF AN EXPERIMENTAL STRANGE ATTRACTOR BY PERIODIC-ORBITS [J].
LATHROP, DP ;
KOSTELICH, EJ .
PHYSICAL REVIEW A, 1989, 40 (07) :4028-4031
[5]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[6]  
Stewart GW., 1973, INTRO MATRIX COMPUTA
[7]   Failure of chaos control [J].
van de Water, W ;
de Weger, J .
PHYSICAL REVIEW E, 2000, 62 (05) :6398-6408
[8]   Controlling strong chaos by adaptive coupling method in the perturbed cat map [J].
Xu, HB ;
Wang, GR ;
Chen, SG .
CHINESE PHYSICS LETTERS, 2001, 18 (07) :878-881
[9]   Controlling hyperchaos [J].
Yang, L ;
Liu, ZR ;
Mao, JM .
PHYSICAL REVIEW LETTERS, 2000, 84 (01) :67-70