Variational shape approximation

被引:482
作者
Cohen-Steiner, D [1 ]
Alliez, P
Desbrun, M
机构
[1] Duke Univ, Durham, NC 27706 USA
[2] INRIA, Rennes, France
[3] U So Cal, Los Angeles, CA USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2004年 / 23卷 / 03期
关键词
surfaces; geometric approximation; geometric error metrics; Lloyd's clustering algorithm; anisotropic remeshing;
D O I
10.1145/1015706.1015817
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A method for concise, faithful approximation of complex 3D datasets is key to reducing the computational cost of graphics applications. Despite numerous applications ranging from geometry compression to reverse engineering, efficiently capturing the geometry of a surface remains a tedious task. In this paper, we present both theoretical and practical contributions that result in a novel and versatile framework for geometric approximation of surfaces. We depart from the usual strategy by casting shape approximation as a variational geometric partitioning problem. Using the concept of geometric proxies, we drive the distortion error down through repeated clustering of faces into best-fitting regions. Our approach is entirely discrete and error-driven, and does not require parameterization or local estimations of differential quantities. We also introduce a new metric based on normal deviation, and demonstrate its superior behavior at capturing anisotropy.
引用
收藏
页码:905 / 914
页数:10
相关论文
共 61 条
  • [1] Surface approximation and geometric partitions
    Agarwal, PK
    Suri, S
    [J]. SIAM JOURNAL ON COMPUTING, 1998, 27 (04) : 1016 - 1035
  • [2] Anisotropic polygonal remeshing
    Alliez, P
    Cohen-Steiner, D
    Devillers, O
    Lévy, B
    Desbrun, M
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03): : 485 - 493
  • [3] AMENTA N, 1999, GEOMETRY DISCRETE CO, V22
  • [4] Mesh: Measuring errors between surfaces using the Hausdorff distance
    Aspert, N
    Santa-Cruz, D
    Ebrahimi, T
    [J]. IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : 705 - 708
  • [5] Mesh optimization using global error with application to geometry simplification
    Balmelli, L
    Vetterli, M
    Liebling, TM
    [J]. GRAPHICAL MODELS, 2002, 64 (3-4) : 230 - 257
  • [6] BOISSONNAT JD, 2003, P EUR ACM SIGGRAPH S, P9
  • [7] Borouchaki H, 1998, INT J NUMER METH ENG, V41, P915, DOI 10.1002/(SICI)1097-0207(19980315)41:5<915::AID-NME318>3.0.CO
  • [8] 2-Y
  • [9] BOSSEN FJ, 1996, 5 INT MESH ROUNDT, P63
  • [10] BOTSCH M, 2001, EUR P SEP, P402