Relating quantum privacy and quantum coherence: An operational approach

被引:83
作者
Devetak, I
Winter, A
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevLett.93.080501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given many realizations of a state or a channel as a resource, two parties can generate a secret key as well as entanglement. We describe protocols to perform the secret key distillation (as it turns out, with optimal rate). Then we show how to achieve optimal entanglement generation rates by "coherent" implementation of a class of secret key agreement protocols, proving the long-conjectured "hashing inequality."
引用
收藏
页码:080501 / 1
页数:4
相关论文
共 27 条
[1]  
ACIN A, QUANTPH0303053
[2]   Strong converse for identification via quantum channels [J].
Ahlswede, R ;
Winter, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (03) :569-579
[3]   COMMON RANDOMNESS IN INFORMATION-THEORY AND CRYPTOGRAPHY .1. SECRET SHARING [J].
AHLSWEDE, R ;
CSISZAR, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) :1121-1132
[4]   On quantum fidelities and channel capacities [J].
Barnum, H ;
Knill, E ;
Nielsen, MA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1317-1329
[5]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[6]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[7]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[8]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[9]  
BRUSS D, QUANTPH0303184
[10]  
CAI N, IN PRESS QUANTUM PRI, P1303