Global networks of functional coupling in eukaryotes from comprehensive data integration

被引:120
作者
Alexeyenko, Andrey [1 ]
Sonnhammer, Erik L. L. [1 ]
机构
[1] Stockholm Univ, Stockholm Bioinformat Ctr, S-10691 Stockholm, Sweden
关键词
PROTEIN-PROTEIN INTERACTIONS; ALPHA-SYNUCLEIN; C-ELEGANS; PREDICTION; IDENTIFICATION; INPARALOGS; DATABASES; PATHWAYS; MODELS; GENES;
D O I
10.1101/gr.087528.108
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
No single experimental method can discover all connections in the interactome. A computational approach can help by integrating data from multiple, often unrelated, proteomics and genomics pipelines. Reconstructing global networks of functional coupling (FC) faces the challenges of scale and heterogeneity-how to efficiently integrate huge amounts of diverse data from multiple organisms, yet ensuring high accuracy. We developed FunCoup, an optimized Bayesian framework, to resolve these issues. Because interactomes comprise functional coupling of many types, FunCoup annotates network edges with confidence scores in support of different kinds of interactions: physical interaction, protein complex member, metabolic, or signaling link. This capability boosted overall accuracy. On the whole, the constructed framework was comprehensively tested to optimize the overall confidence and ensure seamless, automated incorporation of new data sets of heterogeneous types. Using over 50 data sets in seven organisms and extensively transferring information between orthologs, FunCoup predicted global networks in eight eukaryotes. For the Ciona intestinalis network, only orthologous information was used, and it recovered a significant number of experimental facts. FunCoup predictions were validated on independent cancer mutation data. We show how FunCoup can be used for discovering candidate members of the Parkinson and Alzheimer pathways. Cross-species pathway conservation analysis provided further support to these observations.
引用
收藏
页码:1107 / 1116
页数:10
相关论文
共 48 条
[1]   Automatic clustering of orthologs and inparalogs shared by multiple proteomes [J].
Alexeyenko, Andrey ;
Tamas, Ivica ;
Liu, Gang ;
Sonnhammer, Erik L. L. .
BIOINFORMATICS, 2006, 22 (14) :E9-E15
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]  
Bader GD, 2003, NUCLEIC ACIDS RES, V31, P248, DOI 10.1093/nar/gkg056
[4]   Gaining confidence in high-throughput protein interaction networks [J].
Bader, JS ;
Chaudhuri, A ;
Rothberg, JM ;
Chant, J .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :78-85
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]   InParanoid 6:: eukaryotic ortholog clusters with inparalogs [J].
Berglund, Ann-Charlotte ;
Sjolund, Erik ;
Ostlund, Gabriel ;
Sonnhammer, Erik L. L. .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D263-D266
[7]   Integrating physical and genetic maps: from genomes to interaction networks [J].
Beyer, Andreas ;
Bandyopadhyay, Sourav ;
Ideker, Trey .
NATURE REVIEWS GENETICS, 2007, 8 (09) :699-710
[8]  
Bono, 1998, Genome Inform Ser Workshop Genome Inform, V9, P32
[9]  
Boutet Emmanuel, 2007, V406, P89
[10]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956