Anti-viral RNA silencing: do we look like plants?

被引:35
作者
Saumet, Anne [1 ]
Lecellier, Charles-Henri [1 ]
机构
[1] CNRS, UPR 2357, Inst Biol Mol Plantes, F-67084 Strasbourg, France
关键词
D O I
10.1186/1742-4690-3-3
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The anti-viral function of RNA silencing was first discovered in plants as a natural manifestation of the artificial 'co-suppression', which refers to the extinction of endogenous gene induced by homologous transgene. Because silencing components are conserved among most, if not all, eukaryotes, the question rapidly arose as to determine whether this process fulfils anti-viral functions in animals, such as insects and mammals. It appears that, whereas the anti-viral process seems to be similarly conserved from plants to insects, even in worms, RNA silencing does influence the replication of mammalian viruses but in a particular mode: micro(mi)RNAs, endogenous small RNAs naturally implicated in translational control, rather than virus-derived small interfering ( si) RNAs like in other organisms, are involved. In fact, these recent studies even suggest that RNA silencing may be beneficial for viral replication. Accordingly, several large DNA mammalian viruses have been shown to encode their own miRNAs. Here, we summarize the seminal studies that have implicated RNA silencing in viral infection and compare the different eukaryotic responses.
引用
收藏
页数:11
相关论文
共 125 条
[1]   Gene silencing in Caenorhabditis elegans by transitive RNA interference [J].
Alder, MN ;
Dames, S ;
Gaudet, J ;
Mango, SE .
RNA, 2003, 9 (01) :25-32
[2]   MicroRNAs and other tiny endogenous RNAs in C-elegans [J].
Ambros, V ;
Lee, RC ;
Lavanway, A ;
Williams, PT ;
Jewell, D .
CURRENT BIOLOGY, 2003, 13 (10) :807-818
[3]   Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation [J].
Bagga, S ;
Bracht, J ;
Hunter, S ;
Massirer, K ;
Holtz, J ;
Eachus, R ;
Pasquinelli, AE .
CELL, 2005, 122 (04) :553-563
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   RNA silencing [J].
Baulcombe, D .
TRENDS IN BIOCHEMICAL SCIENCES, 2005, 30 (06) :290-293
[6]   Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing [J].
Bennasser, Y ;
Le, SY ;
Benkirane, M ;
Jeang, KT .
IMMUNITY, 2005, 22 (05) :607-619
[7]   HIV-1 encoded candidate micro-RNAs and their cellular targets [J].
Bennasser Y. ;
Le S.-Y. ;
Yeung M.L. ;
Jeang K.-T. .
Retrovirology, 1 (1)
[8]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[9]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418
[10]   RETRACTED: Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana (Retracted article. See vol. 34, pg. 2595, 2015) [J].
Brigneti, G ;
Voinnet, O ;
Li, WX ;
Ji, LH ;
Ding, SW ;
Baulcombe, DC .
EMBO JOURNAL, 1998, 17 (22) :6739-6746