On the Chebyshev penalty method for parabolic and hyperbolic equations

被引:4
作者
Dettori, L
Yang, BL
机构
[1] Division of Applied Mathematics, Brown University, Providence
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1996年 / 30卷 / 07期
关键词
D O I
10.1051/m2an/1996300709071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose, in this article, several versions of the penalty method for the pseudospectral Chebyshev discretization of hyperbolic and parabolic equations. We demonstrate the stability for a range of the penalty parameter. For the hyperbolic equation we find the optimal estimate for the parameter, whereas the estimate for the parabolic case is not optimal.
引用
收藏
页码:907 / 920
页数:14
相关论文
共 7 条
[1]  
CANUTO C, 1988, SPECTRAL METHOSD FLU
[2]   THE CHEBYSHEV LEGENDRE METHOD - IMPLEMENTING LEGENDRE METHODS ON CHEBYSHEV POINTS [J].
DON, WS ;
GOTTLIEB, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (06) :1519-1534
[3]  
FUNARO D, 1988, NUMER MATH, V52, P329, DOI 10.1007/BF01398883
[4]  
FUNARO D, 1988, MATH COMPUT, V51, P599, DOI 10.1090/S0025-5718-1988-0958637-X
[5]  
FUNARO D, 1991, MATH COMPUT, V57, P585, DOI 10.1090/S0025-5718-1991-1094950-6
[6]  
Funaro D., 1992, POLYNOMIAL APPROXIMA
[7]  
GOTTLIEB D, 1984, SPECTRAL METHODS PAR, P1