Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1

被引:94
作者
Wang, Lifu
Rhodes, Christopher J.
Lawrence, John C., Jr.
机构
[1] Univ Virginia, Hlth Syst, Dept Pharmacol, Charlottesville, VA 22908 USA
[2] Univ Washington, Pacific NW Res Inst, Seattle, WA 98122 USA
[3] Univ Washington, Dept Pharmacol, Seattle, WA 98122 USA
关键词
D O I
10.1074/jbc.M603566200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Insulin stimulates protein synthesis by promoting phosphorylation of the eIF4E-binding protein, 4EBP1. This effect is rapamycin-sensitive and mediated by mammalian target of rapamycin ( mTOR) complex 1 ( mTORC1), a signaling complex containing mTOR, raptor, and mLST8. Here we demonstrate that insulin produces a stable increase in the kinase activity of mTORC1 in 3T3-L1 adipocytes. The response was associated with a marked increase in 4EBP1 binding to raptor in mTORC1, and it was abolished by disrupting the TOR signaling motif in 4EBP1. The stimulatory effects of insulin on both 4EBP1 kinase activity and binding occurred rapidly and at physiological concentrations of insulin, and both effects required an intact mTORC1. Results of experiments involving size exclusion chromatography and coimmunoprecipitation of epitope-tagged subunits provide evidence that the major insulin-responsive form is dimeric mTORC1, a structure containing two heterotrimers of mTOR, raptor, and mLST8.
引用
收藏
页码:24293 / 24303
页数:11
相关论文
共 51 条