Thermal and chemical diffusion in the rapid solidification of binary alloys

被引:16
作者
Conti, M
机构
[1] Univ Camerino, Dipartimento Matemat & Fis, I-62032 Camerino, Italy
[2] Univ Camerino, Ist Nazl Fis Mat, I-62032 Camerino, Italy
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 01期
关键词
D O I
10.1103/PhysRevE.61.642
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Solidification of binary alloys is characterized by the necessity to reject away from the advancing front two conserved quantities: the latent heat released at the solid-liquid interface and the solute atoms that cannot be accommodated in the solid phase. As thermal diffusion is much faster than chemical diffusion, the latter is generally assumed to be the rate limiting mechanism for the process, and the problem is addressed through the isothermal approximation. In the present paper we use the phase-field model to study the planar growth of a solid germ, nucleated in its undercooled melt. We focus on the effects of a noninstantaneous thermal relaxation. The steady growth predicted at large supersaturation in the isothermal limit is prevented. Depending on the value of the Lewis number the growth rate is limited by either mass or heat diffusion;ih the latter case pre observe a sharp transition between two different regimes, in which originates a nonmonotonic time dependence of the interface temperature. The effects of this transition reflect in the composition of the solidified alloy. PACS number(s): 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp.
引用
收藏
页码:642 / 650
页数:9
相关论文
共 29 条
[1]   Solute trapping and solute drag in a phase-field model of rapid solidification [J].
Ahmad, NA ;
Wheeler, AA ;
Boettinger, WJ ;
McFadden, GB .
PHYSICAL REVIEW E, 1998, 58 (03) :3436-3450
[2]   THE TRANSITION FROM SHORT-RANGE DIFFUSION-LIMITED TO COLLISION-LIMITED GROWTH IN ALLOY SOLIDIFICATION [J].
AZIZ, MJ ;
BOETTINGER, WJ .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :527-537
[3]   CONTINUOUS GROWTH-MODEL FOR INTERFACE MOTION DURING ALLOY SOLIDIFICATION [J].
AZIZ, MJ ;
KAPLAN, T .
ACTA METALLURGICA, 1988, 36 (08) :2335-2347
[4]   MODEL FOR SOLUTE REDISTRIBUTION DURING RAPID SOLIDIFICATION [J].
AZIZ, MJ .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (02) :1158-1168
[5]   Phase-field model of solidification of a binary alloy [J].
Bi, ZQ ;
Sekerka, RF .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 261 (1-2) :95-106
[6]   A DERIVATION AND ANALYSIS OF PHASE FIELD MODELS OF THERMAL ALLOYS [J].
CAGINALP, G ;
JONES, J .
ANNALS OF PHYSICS, 1995, 237 (01) :66-107
[7]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
[8]   PHASE-FIELD METHODS FOR INTERFACIAL BOUNDARIES [J].
CAGINALP, G ;
FIFE, P .
PHYSICAL REVIEW B, 1986, 33 (11) :7792-7794
[9]   PHASE-FIELD AND SHARP-INTERFACE ALLOY MODELS [J].
CAGINALP, G ;
XIE, W .
PHYSICAL REVIEW E, 1993, 48 (03) :1897-1909
[10]   STEFAN AND HELE-SHAW TYPE MODELS AS ASYMPTOTIC LIMITS OF THE PHASE-FIELD EQUATIONS [J].
CAGINALP, G .
PHYSICAL REVIEW A, 1989, 39 (11) :5887-5896