Analysis of hopping conduction in semiconducting and metallic carbon nanotube devices

被引:14
作者
Perello, David J. [2 ]
Yu, Woo Jong [1 ]
Bae, Dong Jae [1 ]
Chae, Seung Jin [1 ]
Kim, M. J. [3 ]
Lee, Young Hee [1 ]
Yun, Minhee [2 ]
机构
[1] Sungkyunkwan Univ, Sungkyunkwan Adv Inst Nanotechnol, Dept Phys, Suwon 440746, South Korea
[2] Univ Pittsburgh, Dept Elect Engn, Pittsburgh, PA 15219 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
基金
美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; LUTTINGER-LIQUID BEHAVIOR; SPECTROSCOPY; TRANSPORT; ELECTRON; SILICON;
D O I
10.1063/1.3151916
中图分类号
O59 [应用物理学];
学科分类号
摘要
Single-walled carbon nanotube field-effect transistors were irradiated with 20 keV electrons using an e-beam lithography exposure method. Analysis of conduction data in the temperature range from 25 to 300 K indicated the creation of insulating regions containing traps along the nanotube channel. Further analysis of semiconducting and metallic nanotube devices shows dramatic differences in the effect of the electron exposure on the hopping defect barrier heights. Barriers for metallic nanotubes saturate at significantly larger values than semiconducting nanotubes due to shorter localization lengths. The limited and near constant density of states at the Fermi level induces a larger hopping length to localization length ratio, further limiting current and increasing measured trap heights. Poole-Frenkel hopping with an adjustment for electron localization is utilized to explain the inconsistencies. n-type and p-type barriers in the nanotube devices displayed exponential dependence on applied gate voltage bias, with the peak barrier height in the metallic device defining a switch of majority carrier. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3151916]
引用
收藏
页数:5
相关论文
共 28 条
[1]   Band-to-band tunneling in carbon nanotube field-effect transistors [J].
Appenzeller, J ;
Lin, YM ;
Knoch, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2004, 93 (19) :196805-1
[2]   Tunneling versus thermionic emission in one-dimensional semiconductors [J].
Appenzeller, J ;
Radosavljevic, M ;
Knoch, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2004, 92 (04) :4
[3]   Aharonov-Bohm oscillations in carbon nanotubes [J].
Bachtold, A ;
Strunk, C ;
Salvetat, JP ;
Bonard, JM ;
Forró, L ;
Nussbaumer, T ;
Schönenberger, C .
NATURE, 1999, 397 (6721) :673-675
[4]   Transport phenomena in an anisotropically aligned single-wall carbon nanotube film [J].
Bae, DJ ;
Kim, KS ;
Park, YS ;
Suh, EK ;
An, KH ;
Moon, JM ;
Lim, SC ;
Park, SH ;
Jeong, YH ;
Lee, YH .
PHYSICAL REVIEW B, 2001, 64 (23)
[5]   Spin transport in interacting quantum wires and carbon nanotubes [J].
Balents, L ;
Egger, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (16) :3464-3467
[6]   Impact of the density of states on the dynamical hopping conductivity -: art. no. 104203 [J].
Bleibaum, O ;
Böttger, H ;
Bryksin, VV .
PHYSICAL REVIEW B, 2002, 66 (10) :1042031-10420310
[7]   Luttinger-liquid behaviour in carbon nanotubes [J].
Bockrath, M ;
Cobden, DH ;
Lu, J ;
Rinzler, AG ;
Smalley, RE ;
Balents, L ;
McEuen, PL .
NATURE, 1999, 397 (6720) :598-601
[8]   The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors [J].
Chen, ZH ;
Appenzeller, J ;
Knoch, J ;
Lin, YM ;
Avouris, P .
NANO LETTERS, 2005, 5 (07) :1497-1502
[9]   In situ Raman scattering studies of alkali-doped single wall carbon nanotubes [J].
Claye, A ;
Rahman, S ;
Fischer, JE ;
Sirenko, A ;
Sumanasekera, GU ;
Eklund, PC .
CHEMICAL PHYSICS LETTERS, 2001, 333 (1-2) :16-22
[10]   Hopping conductivity spectroscopy of carbon nanocluster materials [J].
Demishev, S. V. ;
Bozhko, A. D. ;
Glushkov, V. V. ;
Lyapin, A. G. ;
Obraztsova, E. D. ;
Pronin, A. A. ;
Ishchenko, T. V. ;
Samarin, N. A. ;
Sluchanko, N. E. .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2008, 16 (5-6) :445-453