Multigrid methods on adaptively refined grids

被引:11
作者
Bastian, Peter [1 ]
Wieners, Christian
机构
[1] Univ Stuttgart, Inst Parallel & Distributed Syst, D-7000 Stuttgart, Germany
[2] Univ Karlsruhe, Karlsruhe, Germany
关键词
D O I
10.1109/MCSE.2006.116
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Using multigrid solvers in the adaptive finite element method yields a powerful tool for solving large-scale partial differential equations that exhibit localized features such as singularities or shocks. In addition to describing the basic method and related theory, this article numerically demonstrates the method's performance and utility on 2D and 3D problems.
引用
收藏
页码:44 / 54
页数:11
相关论文
共 30 条
[11]   A BASIC NORM EQUIVALENCE FOR THE THEORY OF MULTILEVEL METHODS [J].
BORNEMANN, F ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1993, 64 (04) :455-476
[12]   Towards algebraic multigrid for elliptic problems of second order [J].
Braess, D .
COMPUTING, 1995, 55 (04) :379-393
[13]  
BRAMBLE JH, 1990, MATH COMPUT, V55, P1, DOI 10.1090/S0025-5718-1990-1023042-6
[14]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[15]  
Eriksson D., 1996, COMPUTATIONAL DIFFER
[17]  
LANG S, 2001, THESIS U STUTTGART
[18]   ASYNCHRONOUS MULTILEVEL ADAPTIVE METHODS FOR SOLVING PARTIAL-DIFFERENTIAL EQUATIONS ON MULTIPROCESSORS - PERFORMANCE RESULTS [J].
MCCORMICK, S ;
QUINLAN, D .
PARALLEL COMPUTING, 1989, 12 (02) :145-156
[19]  
MCCORMICK S, 1986, MATH COMPUT, V46, P439, DOI 10.1090/S0025-5718-1986-0829618-X
[20]  
MCCORMICK S, 1984, COMPUTING SUPPLEMENT, V5, P115