Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels

被引:105
作者
Shim, Woo Sun
Kim, Sung Wan
Lee, Doo Sung [1 ]
机构
[1] Sungkyunkwan Univ, Dept Polymer Sci & Engn, Suwon 440746, South Korea
[2] Univ Utah, Dept Pharmaceut & Pharmaceut Chem, Salt Lake City, UT 84112 USA
关键词
D O I
10.1021/bm0600567
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Novel pH- and temperature-sensitive biodegradable poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol) (PCLA-PEG) block copolymers were synthesized with oligomeric sulfamethazine (OSM) end groups (OSM-PCLA-PEG-PCLA-OSM). Aqueous solutions of these block copolymers have shown sol-gel transition behavior upon both temperature and pH changes under physiological conditions (37 degrees C, pH 7.4). The sol-gel transition of these block copolymer solutions was fine-tuned by controlling the PEG length, the hydrophobic to hydrophilic block ratio (PCLA/PEG), and the molecular weight of the sulfamethazine oligomer. Since changes in temperature do not induce gel formation in this pH- and temperature-sensitive block copolymer solution, this hydrogel can be employed as an injectable carrier using a long guide catheter into the body. In addition, the pH of the block copolymer solution showed no change following PCLA degradation over 1 month, and no indication of gel collapse was observed on addition of buffer solution. As such, these properties make the OSM-PCLA-PEG-PCLA-OSM hydrogel an ideal candidate for use as an injectable carrier for certain protein-based drugs known to denature in low-pH environments.
引用
收藏
页码:1935 / 1941
页数:7
相关论文
共 28 条
[1]   Rheological studies of PLLA-PEO-PLLA triblock copolymer hydrogels [J].
Aamer, KA ;
Sardinha, H ;
Bhatia, SR ;
Tew, GN .
BIOMATERIALS, 2004, 25 (06) :1087-1093
[2]   GRAFT-COPOLYMERS THAT EXHIBIT TEMPERATURE-INDUCED PHASE-TRANSITIONS OVER A WIDE-RANGE OF PH [J].
CHEN, GH ;
HOFFMAN, AS .
NATURE, 1995, 373 (6509) :49-52
[3]   Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield [J].
Ding, ZL ;
Fong, RB ;
Long, CJ ;
Stayton, PS ;
Hoffman, AS .
NATURE, 2001, 411 (6833) :59-62
[4]   CHEMICAL INTERACTIONS BETWEEN DRUGS CONTAINING REACTIVE AMINES WITH HYDROLYZABLE INSOLUBLE BIOPOLYMERS IN AQUEOUS-SOLUTIONS [J].
DOMB, AJ ;
TUROVSKY, L ;
NUDELMAN, R .
PHARMACEUTICAL RESEARCH, 1994, 11 (06) :865-868
[5]   Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres [J].
Fu, K ;
Pack, DW ;
Klibanov, AM ;
Langer, R .
PHARMACEUTICAL RESEARCH, 2000, 17 (01) :100-106
[6]   Sulfonamide based pH-sensitive polymeric micelles: physicochemical characteristics and pH-dependent aggregation [J].
Han, SK ;
Na, K ;
Bae, YH .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2003, 214 (1-3) :49-59
[7]   Dynamic behavior of glucose-responsive poly(methacrylic acid-g-ethylene glycol) hydrogels [J].
Hassan, CM ;
Doyle, FJ ;
Peppas, NA .
MACROMOLECULES, 1997, 30 (20) :6166-6173
[8]   Biodegradable injectable in situ forming drug delivery systems [J].
Hatefi, A ;
Amsden, B .
JOURNAL OF CONTROLLED RELEASE, 2002, 80 (1-3) :9-28
[9]   Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions [J].
Jeong, B ;
Bae, YH ;
Kim, SW .
MACROMOLECULES, 1999, 32 (21) :7064-7069
[10]   Biodegradable block copolymers as injectable drug-delivery systems [J].
Jeong, B ;
Bae, YH ;
Lee, DS ;
Kim, SW .
NATURE, 1997, 388 (6645) :860-862