Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence

被引:165
作者
Inga, A
Storici, F
Darden, TA
Resnick, MA
机构
[1] NIEHS, Genet Mol Lab, NIH, Res Triangle Pk, NC 27709 USA
[2] NIEHS, Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA
关键词
D O I
10.1128/MCB.22.24.8612-8625.2002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Little is known about the mechanisms that regulate differential transactivation by p53. We developed a system in the yeast Saccharomyces cerevisiae that addresses p53 transactivation capacity from 26 different p53 response elements (REs) under conditions where all other factors, such as chromatin, are kept constant. The system relies on a tightly regulated promoter (rheostatable) that can provide for a broad range of p53 expression. The p53 transactivation capacity toward each 20- to 22-bp-long RE could be ranked by using a simple phenotypic assay. Surprisingly, there was as much as a 1,000-fold difference in transactivation. There was no correlation between the functional rank and statistical predictions of binding energy of the REs. Instead we found that the central sequence element in an RE greatly affects p53 transactivation capacity, possibly because of DNA structural properties. Our results suggest that intrinsic DNA binding affinity and p53 protein levels are important contributors to p53-induced differential transactivation. These results are also relevant to understanding the regulation by other families of transcription factors that recognize several sequence-related response elements and/or have tightly regulated expression. We found that p53 had weak activity towards half the apoptotic REs. In addition, p53 alleles associated with familial breast cancer, previously classified as wild type, showed subtle differences in transactivation capacity towards several REs.
引用
收藏
页码:8612 / 8625
页数:14
相关论文
共 90 条
[1]   Post-translational modifications and activation of p53 by genotoxic stresses [J].
Appella, E ;
Anderson, CW .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (10) :2764-2772
[2]   Stress signals utilize multiple pathways to stabilize p53 [J].
Ashcroft, M ;
Taya, Y ;
Vousden, KH .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (09) :3224-3233
[3]   Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study [J].
Bar-Or, RL ;
Maya, R ;
Segel, LA ;
Alon, U ;
Levine, AJ ;
Oren, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11250-11255
[4]   Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases [J].
Barlev, NA ;
Liu, L ;
Chehab, NH ;
Mansfield, K ;
Harris, KG ;
Halazonetis, TD ;
Berger, SL .
MOLECULAR CELL, 2001, 8 (06) :1243-1254
[5]   SELECTION OF DNA-BINDING SITES BY REGULATORY PROTEINS - STATISTICAL-MECHANICAL THEORY AND APPLICATION TO OPERATORS AND PROMOTERS [J].
BERG, OG ;
VONHIPPEL, PH .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 193 (04) :723-743
[6]   To bind or note to bind [J].
Biggin, MD .
NATURE GENETICS, 2001, 28 (04) :303-304
[7]   DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation [J].
Blattner, C ;
Tobiasch, E ;
Litfen, M ;
Rahmsdorf, HJ ;
Herrlich, P .
ONCOGENE, 1999, 18 (09) :1723-1732
[8]   Further characterisation of the p53 responsive element - Identification of new candidate genes for trans-activation by p53 [J].
Bourdon, JC ;
DeguinChambon, V ;
Lelong, JC ;
Dessen, P ;
May, P ;
Debuire, B ;
May, E .
ONCOGENE, 1997, 14 (01) :85-94
[9]   Dominant-negative p53 mutations selected in yeast hit cancer hot spots [J].
Brachmann, RK ;
Vidal, M ;
Boeke, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :4091-4095
[10]   Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations [J].
Brachmann, RK ;
Yu, KX ;
Eby, Y ;
Pavletich, NP ;
Boeke, JD .
EMBO JOURNAL, 1998, 17 (07) :1847-1859