Potassium channels and membrane potential in the modulation of intracellular calcium in vascular endothelial cells

被引:41
作者
Adams, DJ [1 ]
Hill, MA
机构
[1] Univ Queensland, Sch Biomed Sci, Brisbane, Qld 4072, Australia
[2] RMIT Univ, Sch Med Sci, Bundoora, Vic, Australia
关键词
endothelium; calcium; membrane potential; potassium channels; paracrine factors;
D O I
10.1046/j.1540-8167.2004.03277.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
K+ Channels and Membrane Potential in Endothelial Cells. The endothelium plays a vital role in the control of vascular functions, including modulation of tone; permeability and barrier properties; platelet adhesion and aggregation; and secretion of paracrine factors. Critical signaling events in many of these functions involve an increase in intracellular free Ca2+ concentration ([Ca2+](i)). This rise in [Ca2+](i) occurs via an interplay between several mechanisms, including release from intracellular stores, entry from the extracellular space through store depletion and second messenger-mediated processes, and the establishment of a favorable electrochemical gradient. The focus of this review centers on the role of potassium channels and membrane potential in the creation of a favorable electrochemical gradient for Ca2+ entry. In addition, evidence is examined for the existence of various classes of potassium channels and the possible influence of regional variation in expression and experimental conditions.
引用
收藏
页码:598 / 610
页数:13
相关论文
共 150 条
[21]   CHARACTERIZATION OF ACETYLCHOLINE-INDUCED MEMBRANE HYPERPOLARIZATION IN ENDOTHELIAL-CELLS [J].
CHEN, GF ;
CHEUNG, DW .
CIRCULATION RESEARCH, 1992, 70 (02) :257-263
[22]   Molecular diversity of K+ channels [J].
Coetzee, WA ;
Amarillo, Y ;
Chiu, J ;
Chow, A ;
Lau, D ;
McCormack, T ;
Moreno, H ;
Nadal, MS ;
Ozaita, A ;
Pountney, D ;
Saganich, M ;
Vega-Saenz de Miera, E ;
Rudy, B .
MOLECULAR AND FUNCTIONAL DIVERSITY OF ION CHANNELS AND RECEPTORS, 1999, 868 :233-285
[23]   BRADYKININ-INDUCED POTASSIUM CURRENT IN CULTURED BOVINE AORTIC ENDOTHELIAL-CELLS [J].
COLDENSTANFIELD, M ;
SCHILLING, WP ;
POSSANI, LD ;
KUNZE, DL .
JOURNAL OF MEMBRANE BIOLOGY, 1990, 116 (03) :227-238
[24]   BRADYKININ-INDUCED INCREASES IN CYTOSOLIC CALCIUM AND IONIC CURRENTS IN CULTURED BOVINE AORTIC ENDOTHELIAL-CELLS [J].
COLDENSTANFIELD, M ;
SCHILLING, WP ;
RITCHIE, AK ;
ESKIN, SG ;
NAVARRO, LT ;
KUNZE, DL .
CIRCULATION RESEARCH, 1987, 61 (05) :632-640
[25]   COMPARISON OF APICAL AND BASAL SURFACES OF CONFLUENT ENDOTHELIAL-CELLS - PATCH-CLAMP AND VIRAL STUDIES [J].
COLDENSTANFIELD, M ;
CRAMER, EB ;
GALLIN, EK .
AMERICAN JOURNAL OF PHYSIOLOGY, 1992, 263 (03) :C573-C583
[26]   FLOW ACTIVATES AN ENDOTHELIAL POTASSIUM CHANNEL TO RELEASE AN ENDOGENOUS NITROVASODILATOR [J].
COOKE, JP ;
ROSSITCH, E ;
ANDON, NA ;
LOSCALZO, J ;
DZAU, VJ .
JOURNAL OF CLINICAL INVESTIGATION, 1991, 88 (05) :1663-1671
[27]   THE ROLE OF THE MEMBRANE-POTENTIAL OF ENDOTHELIAL AND SMOOTH-MUSCLE CELLS IN THE REGULATION OF CORONARY BLOOD-FLOW [J].
DAUT, J ;
STANDEN, NB ;
NELSON, MT .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 1994, 5 (02) :154-181
[28]   PASSIVE ELECTRICAL-PROPERTIES AND ELECTROGENIC SODIUM-TRANSPORT OF CULTURED GUINEA-PIG CORONARY ENDOTHELIAL-CELLS [J].
DAUT, J ;
MEHRKE, G ;
NEES, S ;
NEWMAN, WH .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 402 :237-254
[29]   FLOW-MEDIATED ENDOTHELIAL MECHANOTRANSDUCTION [J].
DAVIES, PF .
PHYSIOLOGICAL REVIEWS, 1995, 75 (03) :519-560
[30]   Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction [J].
Davies, PF ;
Barbee, KA ;
Volin, MV ;
Robotewskyj, A ;
Chen, J ;
Joseph, L ;
Griem, ML ;
Wernick, MN ;
Jacobs, E ;
Polacek, DC ;
DePaola, N ;
Barakat, AI .
ANNUAL REVIEW OF PHYSIOLOGY, 1997, 59 :527-549