Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylP, a deduced γ-butyrolactone receptor

被引:45
作者
Stratigopoulos, G [1 ]
Gandecha, AR [1 ]
Cundliffe, E [1 ]
机构
[1] Univ Leicester, Dept Biochem, Leicester LE1 7RH, Leics, England
关键词
D O I
10.1046/j.1365-2958.2002.03044.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During promoter-probe analysis carried out in Streptomyces lividans, the TylP protein powerfully inhibited reporter gene expression from the tylP promoter, raising the likelihood that tylP is autoregulated in its native host, Streptomyces fradiae. Also in S. lividans, TylP negatively controlled the tylQ promoter, even though tylQ could still be switched off in S. fradiae strains specifically disrupted in tylP Under the latter conditions, tylosin production was brought forward and enhanced, whereas overexpression of tylP re-sulted in reduced levels of the antibiotic, accompanied by barely detectable transcription from multiple genes of the tylosin biosynthetic cluster. Unexpectedly, overexpression of tylP reduced transcription of tylS, a transcriptional activator essential for tylosin production. This was probably a direct effect, as TylP also reduced expression from the tylS promoter in S. lividans. For these several reasons, we conclude that TylP acts as a repressor during tylosin biosynthesis. In addition, TylP influences morphological differentiation in S. fradiae. On solid media, strains in which tylP was disrupted sporulated significantly earlier than wild type and, in liquid culture, displayed hyperfragmentation.
引用
收藏
页码:735 / 744
页数:10
相关论文
共 31 条
[1]  
[Anonymous], MOL CLONING LAB MANU
[2]   Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis [J].
Bate, N ;
Stratigopoulos, G ;
Cundliffe, E .
MOLECULAR MICROBIOLOGY, 2002, 43 (02) :449-458
[3]   Multiple regulatory genes in the tylosin biosynthetic cluster of Streptomyces fradiae [J].
Bate, N ;
Butler, AR ;
Gandecha, AR ;
Cundliffe, E .
CHEMISTRY & BIOLOGY, 1999, 6 (09) :617-624
[4]   NUCLEOTIDE-SEQUENCE AND EXACT LOCALIZATION OF THE NEOMYCIN PHOSPHOTRANSFERASE GENE FROM TRANSPOSON TN5 [J].
BECK, E ;
LUDWIG, G ;
AUERSWALD, EA ;
REISS, B ;
SCHALLER, H .
GENE, 1982, 19 (03) :327-336
[5]   THE MESSENGER-RNA FOR THE 23S RIBOSOMAL-RNA METHYLASE ENCODED BY THE ERME GENE OF SACCHAROPOLYSPORA-ERYTHRAEA IS TRANSLATED IN THE ABSENCE OF A CONVENTIONAL RIBOSOME-BINDING SITE [J].
BIBB, MJ ;
WHITE, J ;
WARD, JM ;
JANSSEN, GR .
MOLECULAR MICROBIOLOGY, 1994, 14 (03) :533-545
[6]   PLASMID CLONING VECTORS FOR THE CONJUGAL TRANSFER OF DNA FROM ESCHERICHIA-COLI TO STREPTOMYCES SPP [J].
BIERMAN, M ;
LOGAN, R ;
OBRIEN, K ;
SENO, ET ;
RAO, RN ;
SCHONER, BE .
GENE, 1992, 116 (01) :43-49
[7]   Antibiotic resistance gene cassettes derived from the Omega interposon for use in E-coli and Streptomyces [J].
BlondeletRouault, MH ;
Weiser, J ;
Lebrihi, A ;
Branny, P ;
Pernodet, JL .
GENE, 1997, 190 (02) :315-317
[8]  
BRYSON V, 1952, SCIENCE, V116, P45, DOI 10.1126/science.116.3003.45
[9]   Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae [J].
Butler, AR ;
Bate, N ;
Cundliffe, E .
CHEMISTRY & BIOLOGY, 1999, 6 (05) :287-292
[10]   Structure-activity studies of tylosin-related macrolides [J].
Fish, SA ;
Cundliffe, E .
JOURNAL OF ANTIBIOTICS, 1996, 49 (10) :1044-1048