Linkage of monovalent and divalent ion binding in the folding of the P4-P6 domain of the Tetrahymena ribozyme

被引:34
作者
Uchida, T
He, Q
Ralston, CY
Brenowitz, M
Chance, MR
机构
[1] Yeshiva Univ Albert Einstein Coll Med, Dept Physiol & Biophys, Ctr Synchrotron Biosci, Bronx, NY 10461 USA
[2] Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA
关键词
D O I
10.1021/bi020042v
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have explored the linkage of monovalent and divalent ion binding in the folding of the P4-P6 domain of Tetrahymena thermophila ribozyme by examining the Mg2+-induced folding and the urea-induced denaturation of the folded state as a function of Na+ under equilibrium folding conditions using hydroxyl radical footprinting. These studies allowed a thermodynamic examination of eight discrete protection sites within P4-P6 that are involved in several tertiary structure contacts. Monovalent ions compete with Mg2+ ions in mediating P4-P6 folding. The urea denaturation isotherms demonstrated DeltaDeltaG values of > 2 kcal mol(-1) in experiments conducted in 10 versus 200 mM NaCl at a constant 10 mM MgCl2. However, the individual-site isotherms reported by footprinting revealed that larger than average changes in DeltaG values were localized to specific sites within the Mg2+-rich A-bulge. The competitive effects of monovalent ions were less when K+ rather than Na+ was the monovalent cation present. This result indicates the importance of the specific K+ binding sites that are associated with AA-platform structures to P4-P6 folding and stability. These site-specific footprinting data provide quantitative and site-specific measurements of the ion-linked stability for P4-P6 that are interpreted with respect to crystallographic data.
引用
收藏
页码:5799 / 5806
页数:8
相关论文
共 40 条
[1]   A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor [J].
Basu, S ;
Rambo, RP ;
Strauss-Soukup, J ;
Cate, JH ;
Ferré-D'Amaré, AR ;
Strobel, SA ;
Doudna, JA .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (11) :986-992
[2]  
BRENOWITZ M, 1986, METHOD ENZYMOL, V130, P132
[3]  
Buchmueller KL, 2000, NAT STRUCT BIOL, V7, P362
[4]   A magnesium ion core at the heart of a ribozyme domain [J].
Cate, JH ;
Hanna, RL ;
Doudna, JA .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (07) :553-558
[5]   Crystal structure of a group I ribozyme domain: Principles of RNA packing [J].
Cate, JH ;
Gooding, AR ;
Podell, E ;
Zhou, KH ;
Golden, BL ;
Kundrot, CE ;
Cech, TR ;
Doudna, JA .
SCIENCE, 1996, 273 (5282) :1678-1685
[6]   VISUALIZING THE HIGHER-ORDER FOLDING OF A CATALYTIC RNA MOLECULE [J].
CELANDER, DW ;
CECH, TR .
SCIENCE, 1991, 251 (4992) :401-407
[7]   Folding mechanism of the Tetrahymena ribozyme P4-P6 domain [J].
Deras, ML ;
Brenowitz, M ;
Ralston, CY ;
Chance, MR ;
Woodson, SA .
BIOCHEMISTRY, 2000, 39 (36) :10975-10985
[8]   A thermodynamic framework and cooperativity in the tertiary folding of a Mg2+-dependent ribozyme [J].
Fang, XW ;
Pan, T ;
Sosnick, TR .
BIOCHEMISTRY, 1999, 38 (51) :16840-16846
[9]   Effects of Mg2+, K+, and H+ on an equilibrium between alternative conformations of an RNA pseudoknot [J].
Gluick, TC ;
Gerstner, RB ;
Draper, DE .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 270 (03) :451-463
[10]   FURTHER REFINEMENT OF STRUCTURE OF YEAST TRANSFER-RNA PHE [J].
HINGERTY, B ;
BROWN, RS ;
JACK, A .
JOURNAL OF MOLECULAR BIOLOGY, 1978, 124 (03) :523-534